Main Article Content

Abstract

Ranitidine hydrochloride is a drug used to treat stomach acid production. It is commonly advised in the treatment of peptic ulcer and gastrophaegal reflux. Ranitidine hydrochloride exists in two different polymorphic forms, namely form I and form II. Various brands of ranitidine hydrochloride tablets manufactured by different pharmaceutical companies in India were collected, finely powdered and recrystallized from ethanol water mixture. The melting points of pure drug samples were determined to assess the polymorphic form present in each sample. All the pure drug samples showed a melting point in the range 135 to 138 °C and prove the existence of polymorph form I. The pure recrystallized drug samples were kept at room temperature for about 60 days in order to study the changes in polymorphic form if any and found fairly stable on prolonged storage. Infrared and UV-visible spectral studies have been carried out by taking Zinetac 150 mg (GlaxoSmithKline Pharmaceuticals Ltd., Mumbai) as the standard in order to prove the chemical constitution of the drug.

Keywords

Polymorphism Ranitidine hydrochloride

Article Details

How to Cite
Bijudas, K., & Bashpa, P. (2019). A comparative Study on Polymorphism of Commercial Ranitidine Hydrochloride Drug Samples in India. Asian Journal of Organic & Medicinal Chemistry, 4(3), 185–188. https://doi.org/10.14233/ajomc.2019.AJOMC-P221

References

  1. R. Censi and P.D. Martini, Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs, Molecules, 20, 18759 (2015); https://doi.org/10.3390/molecules201018759.
  2. R.G. Colin, T.W. Christopher and A. Orn, Drugs as Materials: Valuing Physical Form in Drug Discovery, Nat. Rev. Drug. Discov., 3, 926 (2004); https://doi.org/10.1038/nrd1550.
  3. G.R. Desiraju, Crystal Engineering: From Molecule to Crystal, J. Am. Chem. Soc., 135, 9952 (2013); https://doi.org/10.1021/ja403264c.
  4. D.J.W. Grant, ed.: G.H. Brittain, Theory and Origin of Polymorphism. Polymorphism in Pharmaceutical Solids, Marcel Dekker Inc.: New York, USA, Chap. 1 (1999).
  5. H.G. Brittain, Polymorphism in Pharmaceutical Solids, CRC Press: New York, USA, edn 2 (2009).
  6. O.M.M. Santos, M.E.D. Reis, J.T. Jacon, M.E.D.S. Lino, J.S. Simoes and A.C. Dorigeutto, Polymorphism: An Evaluation of the Potential Risk to the Quality of Drug Products from the Farmácia Popular Rede Própria, Braz. J. Pharm. Sci., 50, 1 (2014); https://doi.org/10.1590/S1984-82502011000100002.
  7. S.M. Guthrie, D.M. Smilgies and G. Giri, Controlling Polymorphism in Pharmaceutical Compounds Using Solution Shearing, Cryst. Growth. Des., 18, 602 (2018); https://doi.org/10.1021/acs.cgd.7b01686.
  8. J. Haleblian and W. McCrone, Pharmaceutical Applications of Poly-morphism, J. Pharm. Sci., 58, 911 (1969); https://doi.org/10.1002/jps.2600580802.
  9. Y. Zhou, J. Wang, Y. Xiao, T. Wang and X. Huang, The Effects of Polymorphism on Physico-chemical Properties and Pharmacodynamics of Solid Drugs, Curr. Pharm. Des., 24, 2375 (2018); https://doi.org/10.2174/1381612824666180515155425.
  10. B.J. Price, J. Bradshaw and J.W. Clitherow, Aminoalkyl Furan Derivatives. DE 2734070; FR 2360587; US 4128658, DE 2734070; FR 2360587; US 4128658.
  11. P. Bashpa, K. Bijudas, A.M. Tom, P.K. Archana, K.P. Murshida, K.N. Banu, K.R. Amritha and K. Vimisha, Polymorphism of Paracetamol: A Comparative Study on Commercial Paracetamol Samples, Int. J. Chem. Stud., 1, 25 (2014).
  12. P. Espeau, R. Ceolin, J.L. Tamarit, M.A. Perrin, J.P. Gauchi and F. Leveiller, Polymorphism of Paracetamol: Relative Stabilities of the Monoclinic and Orthorhombic Phases Inferred from Topological Pressure-Temperature and Temperature-Volume Phase Diagrams, J. Pharm. Sci., 94, 524 (2005); https://doi.org/10.1002/jps.20261.
  13. N. Tsapatsaris, B.A. Kolesov, J. Fischer, E.V. Boldyreva, L. Daemen, J. Eckert and H.N. Bordallo, Polymorphism of Paracetamol: A New Understanding of Molecular Flexibility through Local Methyl Dynamics, Mol. Pharmaceut., 11, 1032 (2014); https://doi.org/10.1021/mp400707m.
  14. P. Bashpa and K. Bijudas, Studies on Polymorphism of Commercial Aspirin and Albendazole Tablets, Int. J. Pharm. Sci. Res., 9, 2490 (2018); https://doi.org/10.13040/IJPSR.0975-8232.9(6).2490-93.
  15. A.D. Bond, R. Boese and G.R. Desiraju, On the Polymorphism of Aspirin: Crystalline Aspirin as Intergrowths of Two Polymorphic Domains, Angew. Chem. Int. Ed. Engl., 46, 618 (2007); https://doi.org/10.1002/anie.200603373.
  16. A.G. Shtukenberg, T.C. Hu, Q. Zhu, M.U. Scmidt, W. Xu, M. Tan and B. Kahr, The Third Ambient Aspirin Polymorph, Cryst. Growth. Des., 17, 3562 (2017); https://doi.org/10.1021/acs.cgd.7b00673.
  17. M.B. Pranzo, D. Cruickshank, M. Coruzzi, M.R. Caira and R. Bettini, Enantiotropically Related Albendazole Polymorphs, J. Pharm. Sci., 99, 3731 (2010); https://doi.org/10.1002/jps.22072.
  18. R. Prashant, M. Rakesh, N. Tanaji and P. Sudhilkumar, Solubility and Dissolution Enhancement of Albendazole by Spherical Crystallization, Asian J. Biomed. Pharm., 6, 9 (2016).
  19. S. Agatonovic-Kustrin, T. Rades, V. Wu, D. Saville and I.G. Tucker, Determination of Polymorphic Forms of Ranitidine–HCl by DRIFTS and XRPD, J. Pharm. Biomed. Anal., 25, 741 (2001); https://doi.org/10.1016/S0731-7085(01)00375-2.
  20. P.F. Taday, I.V. Bradely, D.D. Arnone and M. Pepper, Using Terahertz Pulse Spectroscopy to Study the Crystalline Structure of a Drug: A Case Study of the Polymorphs of Ranitidine Hydrochloride, J. Pharm. Sci., 92, 831 (2003); https://doi.org/10.1002/jps.10358.
  21. M. Trifkovic, S. Rohani and M. Mirmehrabi, Polymorphic Generation through Solvent Selection: Ranitidine Hydrochloride, Org. Process. Res. Dev., 11, 138 (2007); https://doi.org/10.1021/op060011y.