Main Article Content

Abstract

A series of 1,2,4-triazolyl-4-(5-indolylidene)-thiazolidinone derivatives were synthesized and screened for their antifungal and antioxidant activity. Among these synthesized compounds 3d, 3g showing good antifungal activity and compounds 3b, 3d, 3f and 3h have high % antioxidant activity with lower IC50 value of 11.21, 20.89, 17.51 and 14.05 respectively. We report the antioxidant potential of the said class of compound in which free radical is generated by methelenic and 2nd carbon of thiazolidinone ring. The antifungal activity reported against A. niger, C. albicans and A. flavus. The antioxidant activity of all the synthesized compounds was screened by H2O2, DPPH scavenging and by phosphomolybdenum method with respect to ascorbic acid.

Keywords

Schiff base 4-Thiazolidinone Antifungal activity 1,2,4-Triazole

Article Details

How to Cite
Khan, T., & Yadav, R. (2019). Synthesis of Some New 5-Indolylidene-4- thiazolidinone Derivatives of 1,2,4-triazole as Potent Antioxidant and Antifungal Agents. Asian Journal of Organic & Medicinal Chemistry, 4(3), 174–179. https://doi.org/10.14233/ajomc.2019.AJOMC-P214

References

  1. A.K. Jain, A. Vaidya, V. Ravichandran, S.K. Kashaw and R.K. Agrawal, Recent Developments and Biological Activities of Thiazolidinone Derivatives: A Review, Bioorg. Med. Chem., 20, 3378 (2012); https://doi.org/10.1016/j.bmc.2012.03.069.
  2. F. Hassan, A.B. Hameed, A. Alshanon, B.S. Abdullah, H.Z. Huri, N. Hairunisa and E. Yousif, Antitumor Activity for Gold(III) Complex by High Content Screening Technique (HCS) and Cell Viability Assay, Asian J. Biochem., 10, 252 (2015) https://doi.org/10.3923/ajb.2015.252.266.
  3. V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar amd R. Kumari and N. Dhaka, Potential Applications of Antioxidants-A Review, J. Pharm. Res., 7, 828 (2013); https://doi.org/10.1016/j.jopr.2013.10.001.
  4. A. Gupta, R. Singh, P.K. Sonar and S.K. Saraf, Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization and Antimicrobial Evaluation, Biomed. Res. Int., 2016, Article ID 8086 (2016); https://doi.org/10.1155/2016/8086762.
  5. S.K. Srivastava, A. Jain and S. Srivastava, Synthesis and Biological Signi-ficance of 2-Mercaptobenzoxazole Derivatives, J. Indian Chem. Soc., 83, 1118 (2006).
  6. S.K. Srivastava, R. Yadav and S.D. Srivastava, Synthesis of Some New 2-Mercaptobenzothiazolyl-2-oxoazetidines as Antimicrobial and Anthelmintic agents, J. Indian Chem. Soc., 81, 342 (2004).
  7. I. Awad, A. Abdel-Rahman and E. Bakite, Synthesis and Application of Some New Heterocyclo-S-Triazole Derivatives as Antimicrobial Agents, J. Chem. Technol. Biotechnol., 51, 483 (2008); https://doi.org/10.1002/jctb.280510406.
  8. H.M. Dalloul, Reaction of Nitrilimines with Pyruvaldehyde Hydrazones: Synthesis and Antimicrobial Evaluation of Some New 1,2,4-Triazole Derivatives, J. Chem., 2015, Article ID 593738 (2015); https://doi.org/10.1155/2015/593738.
  9. Z.A. Kaplancikli, T.G. Zitouni, A. Ozdemir and G. Revail, Eur. J. Med. Chem., 43, 115 (2008); https://doi.org/10.1016/j.ejmech.2007.03.019.
  10. M.W. Akhter, M.Z. Hassan and M. Amir, Synthesis and Pharmacolo-gical Evaluation of 3-Diphenylmethyl-6-substituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles: A Condensed Bridgehead Nitrogen Heterocyclic System, Arab. J. Chem., 7, 955 (2014); https://doi.org/10.1016/j.arabjc.2014.05.036.
  11. S. Shenone, O. Bruno, A. Ranise, W. Bondavalli, G. Falcone, L. Giordano and M.R. Vitelli, 3-Arylsulphonyl-5-arylamino-1,3,4-thiadiazol-2(3H)-ones as Anti-inflammatory and Analgesic Agents, Bioorg. Med. Chem., 9, 2149 (2001); https://doi.org/10.1016/S0968-0896(01)00121-3.
  12. S.D. Joshi, H.M. Vagdevi, V.P. Vaidya and G.S. Gadaginamath, Synthesis of New 4-Pyrrol-1-yl Benzoic Acid Hydrazide Analogs and Some Derived Oxadiazole, Triazole and Pyrrole Ring Systems: A Novel Class of Potential Antibacterial and Antitubercular Agents, Eur. J. Med. Chem., 48, 1989 (2008); https://doi.org/10.1016/j.ejmech.2007.11.016.
  13. O. Pintilie, L. Profire, V. Sunel and P.A. Popa, Synthesis and Anti-microbial Activity of Some New 1,3,4-Thiadiazole and 1,2,4-Triazole Compounds having a D,L-Methionine Moiety, Molecules, 12, 103 (2007); https://doi.org/10.3390/12010103.
  14. R. El-Sayed, Synthesis, Antibacterial and Surface Activity of 1,2,4-Triazole Derivatives, Indian J. Chem., 45B, 738 (2006).
  15. P. Molyneux, The Use of Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity, Songklanakarin J. Sci. Technol., 26, 211 (2004).
  16. A.M. Pisoschi and G.P. Negulescu, Methods for Total Antioxidant Activity Determination: A Review, Biochem. Anal. Biochem., 1, 106 (2011); https://doi.org/10.4172/2161-1009.1000106.
  17. X. Li, X.-Q. Li, H.-M. Liu, X.-Z. Zhou and Z.-H. Shao, Synthesis and Evaluation of Antitumor Activities of Novel Chiral 1,2,4-Triazole Schiff Bases Bearing g-Butenolide Moiety, Org. Med. Chem. Lett., 2, 26 (2012); https://doi.org/10.1186/2191-2858-2-26.
  18. T. Khan and R. Yadav, Synthesis, Characterization and Antioxidant Activity of Some New 4-Thiazolidinonyl-4H-1,2,4-Triazole Derivatives, Heterocycl. Lett., 6, 757 (2016).
  19. R. Yadav, S.D. Srivastava and S.K. Srivastava, Synthesis, Antimicrobial and Antiinflammatory Activities of 4-Oxothiazolidines and their 5-Arylidenes, Indian J. Chem., 44B, 1262-1266 (2005).
  20. R. Dua, S.K. Srivastava and S.D. Srivastava, Synthesis, Characterization and Antimicrobial Activity of 4-Oxothiazolidines and 5-Arylidene Derivatives of 2-Methylimidazoles, Macroheterocycles, 3, 82 (2010); https://doi.org/10.6060/mhc2010.1.82.
  21. M.A. Shakhatreh, M.L. Al-smadi, O.F. Khabour, F.A. Shuaibu, E.I. Hussein and K.H. Alzoubi, Study of the Antibacterial and Antifungal Activities of Synthetic Benzyl Bromides, Ketones and Corresponding Chalcone Derivatives, Drug Design, Develop. Ther., 10, 3653 (2016); https://doi.org/10.2147/DDDT.S116312.
  22. H. Matsuda, T. Wang, H. Managi and M. Yoshikawa, Structural Requirements of Flavonoids for Inhibition of Protein Glycation and Radical Scavenging Activities, Bioorg. Med. Chem., 11, 5317 (2003); https://doi.org/10.1016/j.bmc.2003.09.045.
  23. S.F. Barbuceanu, D.C. Illies, G. Saramet, V. Uivarosi, C. Draghici and V. Radulescu, Synthesis and Antioxidant Activity Evaluation of New Compounds from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing Diarylsulfone and 2,4-Difluorophenyl Moieties, Int. J. Mol. Sci., 15, 10908 (2014); https://doi.org/10.3390/ijms150610908.
  24. A.A. Hameed and F. Hassan and F. Hassan, Synthesis, Characterization and Antioxidant Activity of Some 4-Amino-5-phenyl-4H-1,2,4-triazole-3-thiol Derivatives, Int. J. Appl. Sci. Technol., 4, 202 (2014).
  25. T. Tsuneda, J. Miyake and K. Miyatake, Mechanism of H2O2 Decom-position by Triphenylphosphine Oxide, ACS Omega, 3, 259 (2018); https://doi.org/10.1021/acsomega.7b01416.
  26. D. Babu, P. Gurumurthy, S.K. Borra and K.M. Cherian, Antioxidant and Free Radical Scavenging Activity of Triphala Determined by Using Different in vitro Models, J. Med. Plants Res., 7, 2898 (2013).
  27. R.J. Ruch, S.J. Cheng and J.E. Klaunig, Prevention of Cytotoxicity and Inhibition of Intercellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003.
  28. S. Keser, S. Celik, S. Turkoglu, O. Yilmaz and I. Turkoglu, Hydrogen Peroxide Radical Scavenging and Total Antioxidant Activity of Hawthorn, Chem. J., 2, 9 (2012).
  29. P. Prieto, M. Pineda and M. Aguilar, Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E, Anal. Bioch., 269, 337 (1999); https://doi.org/10.1006/abio.1999.4019.