Main Article Content

Abstract

Lonar Crater lake was created by the impact of a massive meteor during the Pleistocene Epoch. Being a hypersaline and hyperalkaline soda lake, rich microbial diversity is reported earlier. Lonar lake water is used by local people and tribals against skin diseases. These observations prompted us to investigate the therapeutic potential of lake water against skin diseases. In this context, we have conducted pilot study to assess the antipsoriatic and antiangiogenic activity of the salt obtained from lake water using THP1 cell line by MTT assay and antiangiogenic activity by in vivo chicken chorioallantoic membrane (CAM) assay, as there is a close relation between psoriasis and angiogenesis. The results revealed that salt possess remarkable antipsoriatic and antiangiogenic activity.

Keywords

Lonar crater Psoriasis Angiogenesis THP1 Chorioallantoic membrane

Article Details

How to Cite
Bansode, P., Somasundaram, I., Birajdar, A., Mishra, S., Patil, D., Waghmode, A., & Rashinkar, G. (2019). Evaluation of Chemical, Antipsoriatic and Antiangiogenic Properties of Salt from Lonar Crater Lake Water. Asian Journal of Organic & Medicinal Chemistry, 4(3), 159–165. https://doi.org/10.14233/ajomc.2019.AJOMC-P193

References

  1. T. Ogato, D. Kifle and B. Lemm, Spatio-Temporal Variations in Under-water Light Climate, Thermal and Chemical Characteristics of the Tropical Soda Lake, Lake Shala, Ethiopia, Limnology, 17, 59 (2016); https://doi.org/10.1007/s10201-015-0462-7.
  2. A.A. Joshi, P.P. Kanekar, S. Sarnaik and A. Kelkar, ed.: P.K. Banmeru, S.K. Banmeru and V.R. Mishra, Bacterial Diversity of Lonar Lake Ecosystem, In: Biodiversity of Lonar Crater, Anamaya: New Delhi, pp 71–75 (2005).
  3. B.E. Jones, W.D. Grant, A.W. Dockworth and G.G. Owenson, Microbial Diversity of Soda Lakes, Extremophiles, 3, 191 (1998); https://doi.org/10.1007/s007920050060.
  4. C.D. Thakker and D.R. Ranade, Alkalophilic Methanosarcina isolated from Lonar Lake, Curr. Sci., 82, 455 (2002).
  5. A.G. Jhingran and K.V. Rao, Lonar Lake and its Salinity, Rec. Geol. Surv. India, 85, 313 (1954).
  6. S. Ohsawa, T. Saito, S. Yoshikawa, H. Mawatari, M. Yamada, K. Amita, N. Takamatsu, Y. Sudo and T. Kagiyama, Color Change of Lake Water at the Active Crater Lake of Aso Volcano, Yudamari, Japan: Is It In Response to Change in Water Quality Induced by Volcanic Activity? Limnology, 11, 207 (2010); https://doi.org/10.1007/s10201-009-0304-6.
  7. S. Ueda, H. Kawabata, H. Hasegawa and K. Kondo, Characteristics of Fluctuations in Salinity and Water Quality in Brackish Lake Obuchi, Limnology, 1, 57 (2000); https://doi.org/10.1007/s102010070029.
  8. K.B. Deshmukh, A. P. Pathak and M. S. Karuppayil, Bacterial Diversity of Lonar Soda Lake of India, Indian J. Microbiol., 51, 107 (2011); https://doi.org/10.1007/s12088-011-0159-5.
  9. A.A. Joshi, P.P. Kanekar, A.S. Kelkar, Y.S. Shouche, A.A. Vani, S.B. Borgave and S.S. Sarnaik, Cultivable Bacterial Diversity of Alkaline Lonar Lake, India, Microb. Ecol., 55, 163 (2005); https://doi.org/10.1007/s00248-007-9264-8.
  10. D. Alazard , C. Badillo, M. L. Fardeau, J.L. Cayol, P. Thomas, T. Roldan, J.L. Tholozan and B. Ollivier, Tindallia texcoconensis sp. nov., A New Haloalkaliphilic Bacterium Isolated from Lake Texcoco, Mexico, Extremophiles, 11, 33 (2007); https://doi.org/10.1007/s00792-006-0006-5.
  11. S.P. Wright, P.R. Christensen, T.G. Sharp, Laboratory Thermal Emission Spectroscopy of Shocked Basalt from Lonar Crater, India, and Implications for Mars Orbital and Sample Data, J. Geophys. Res., 116, E09006 (2011); https://doi.org/10.1029/2010JE003785.
  12. R.L. Mancinelli, T.F. Fahlen, R. Landheim and M.R. Klovstad, Brines and Evaporites: Analogs for Martian Life, Adv. Space Res., 33, 1244 (2004); https://doi.org/10.1016/j.asr.2003.08.034.
  13. C.E.M. Griffiths and J.N.W.N. Barker, Pathogenesis and Clinical Features of Psoriasis, Lancet, 370, 263 (2007); https://doi.org/10.1016/S0140-6736(07)61128-3.
  14. R. Heidenreich, M. Rocken and K. Ghoreschi, Angiogenesis: The New Potential Target for the Therapy of Psoriasis?, Drug News Perspect., 21, 97 (2008); https://doi.org/10.1358/dnp.2008.21.2.1188196.
  15. N.J. Wilson, K. Boniface, J.R. Chan, B.S. McKenzie, W.M. Blumenschein, J.D. Mattson, B. Basham, K. Smith, T. Chen, F. Morel, J.C. Lecron, R.A. Kastelei, D.J. Cua, T.K. McClanahan, E.P. Bowman and R. de Waal Malefyt, Development, Cytokine Profile and Function of Human Interleukin 17–Producing Helper T Cells, Nat. Immunol., 8, 950 (2007); https://doi.org/10.1038/ni1497.
  16. L. Kemény, T. Ruzicka and O. Braun-Falco, Skin Pharmacol., 3, 1 (1990); https://doi.org/10.1159/000210836.
  17. D. Creamer, D. Sullivan, R. Bicknell and J. Barker, Dithranol: A Review of the Mechanism of Action in the Treatment of Psoriasis vulgaris, Angiogenesis, 5, 231 (2002); https://doi.org/10.1023/A:1024515517623.
  18. S. Hirata, T. Matsubara, R. Saura, H. Tateishi and K. Hirohata, Inhibition of in vitro Vascular Endothelial Cell Proliferation and in vivo Neovascu-larization By Low? Dose Methotrexate, Arthritis Rheum., 32, 1065 (1989); https://doi.org/10.1002/anr.1780320903.
  19. G.L. Hernandez, O.V. Volpert, M.A. Iniguez, E. Lorenzo, S. Martinez-Martinez, R. Grau, M. Fresno and J.M. Redondo, Selective Inhibition of Vascular Endothelial Growth Factor–Mediated Angiogenesis by Cyclosporin a, J. Exp. Med., 193, 607 (2001); https://doi.org/10.1084/jem.193.5.607.
  20. L. Trémezaygues and J. Reichrath, Vitamin D Analogs in the Treatment of Psoriasis. Where are We Standing and Where will We be Going?, Dermato-Endocrinol., 3, 180 (2011); https://doi.org/10.4161/derm.17534.
  21. L.H. Kircik and J.Q. Del Rosso, Anti-TNF Agents for the Treatment of Psoriasis, J. Drugs Dermatol., 8, 546 (2009).
  22. A. Roll, K. Reich and A. Boer, Use of Fumaric Acid Esters in Psoriasis, Indian J. Dermatol. Venereol. Leprol., 73, 133 (2007); https://doi.org/10.4103/0378-6323.31908.
  23. A.B. Gottlieb, Psoriasis: Emerging Therapeutic Strategies, Nat. Rev. Drug Discov., 4, 19 (2005); https://doi.org/10.1038/nrd1607.
  24. F. Elice and F. Rodeghiero, Side Effects of Anti-Angiogenic Drugs, Thromb. Res., 129, 50 (2012); https://doi.org/10.1016/S0049-3848(12)70016-6.
  25. A. Alemu, B. Lemma, N. Gabbiye, M. Tadele and M. Teferi, Removal of Chromium(VI) from Aqueous Solution using Vesicular Basalt: A Potential Low Cost Wastewater Treatment System, Heliyon, 4, e00682 (2018); https://doi.org/10.1016/j.heliyon.2018.e00682.
  26. D. Kumar, P. Sharma, K. Nepali, G. Mahajan, M.J. Mintoo, A. Singh, G. Singh, D.M. Mondhe, G. Singh, S.K. Jain, G.K. Gupta and F. Ntie-Kang, Antitumour, Acute Toxicity and Molecular Modeling Studies of 4-(Pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one against Ehrlich ascites carcinoma and Sarcoma-180, Heliyon, 4, e00661 (2018); https://doi.org/10.1016/j.heliyon.2018.e00661.
  27. T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
  28. D. Ribatti, The Chick Embryo Chorioallantoic Membrane (CAM) Assay, Reprod Toxicol., 70, 97 (2017); https://doi.org/10.1016/j.reprotox.2016.11.004.
  29. M. Aronniemi, J. Sainio and J. Lahtinen, Chemical State Quantification of Iron and Chromium Oxides using XPS: The Effect of the Background Subtraction Method, Surf. Sci., 578, 108 (2005); https://doi.org/10.1016/j.susc.2005.01.019.
  30. M.C.Biesinger, B.P. Payne, A.P. Grosvenor, W.M. Lau Leo, A.R. Gerson, S. C. Smart Roger, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Surf. Sci., 257, 2717 (2011); https://doi.org/10.1016/j.apsusc.2010.10.051.
  31. H. Nohira , W. Tsai, W. Besling, E. Young, J. Petry, T. Conar, W. Vandervorst, S. de Gendt, M. Heyns, J. Maes and M. Tuominen, Characterization of ALCVD-Al2O3 and ZrO2 Layer using X-Ray Photoelectron Spectroscopy, J. Non-Cryst Solids, 303, 83 (2002); https://doi.org/10.1016/S0022-3093(02)00970-5.
  32. G.M. Rignanese, A. Pasquarella, J.C. Charlier, X. Gonze and R. Car, Nitrogen Incorporation at Si(001)-SiO2 Interfaces: Relation between N 1s Core-Level Shifts and Microscopic Structure, Phys. Rev. Lett., 79, 5174 (1997); https://doi.org/10.1103/PhysRevLett.79.5174.
  33. I. Uhlig, R. Szargan, H.W. Nesbitt and K. Laajalehto, Surface States and Reactivity of Pyrite and Marcasite, Appl. Surf. Sci., 179, 222 (2001); https://doi.org/10.1016/S0169-4332(01)00283-5.
  34. P. Carmeliet, Angiogenesis in Health and Disease, Nat. Med., 9, 653 (2003); https://doi.org/10.1038/nm0603-653.
  35. E.I. Deryugina and J.P. Quigley, Chick Embryo Chorioallantoic Membrane Models to Quantify Angiogenesis Induced by Inflammatory and Tumor Cells or Purified Effector Molecules, Methods Enzymol., 444, 21 (2008); https://doi.org/10.1016/S0076-6879(08)02802-4.
  36. P. Jensen, L. Skov and C. Zachari, Systemic Combination Treatment for Psoriasis: A Review, Acta Derm Venereol., 90, 341 (2010); https://doi.org/10.2340/00015555-0905.