Main Article Content

Abstract

In present study, the molecular modeling techniques were applied to generate a refined model of a cysteine protease of Leishmania donovani using the crystal structure of a homologous protease and used for lead optimization. The structures of a series of complexes of the protease with the designed inhibitors were predicted using a novel docking technique comprising of repeated cycles of molecular dynamics and energy minimization. Calculation of the free energies of binding of the model with the designed inhibitors suggested that three compounds can form stable complexes with dissociation constants in the nanomolar range (0.038-1.41 nM). Search in the human genome revealed that a number of proteases of the cathepsin family had high homology with the parasite protease with amino acid identity around 45 %. The X-ray structures of all these were available in the protein data bank. The structures of the complexes of the selected inhibitors with a few homologous human proteases of known 3-D structures were also predicted using the same technique of optimization. The electrostatic potentials around the binding sites of the proteases were highly negative, which served as a clue for the introduction of positively charged groups in the designed inhibitors for higher affinity. The comparison of interaction energies and hydrogen bonding patterns among these complexes and similar complexes with homologous human proteases allowed us to short-listed three molecules as effective antileishmanial cysteine protease inhibitors.

Keywords

Inhibitor design Comparative modeling Docking Molecular dynamics Cysteine protease Leishmania donovani

Article Details

How to Cite
Dandopath Patra, M. (2019). Rational Lead Optimization Based on the Modeled Structure of Cysteine Protease of Leishmania donovani. Asian Journal of Organic & Medicinal Chemistry, 4(4), 256–266. https://doi.org/10.14233/ajomc.2019.AJOMC-P239

References

  1. J.H. McKerrow, Development of Cysteine Protease Inhibitors as Chemotherapy for Parasitic Diseases: Insights on Safety, Target Validation, and Mechanism of Action, Int. J. Parasitol., 29, 833 (1999); https://doi.org/10.1016/S0020-7519(99)00044-2.
  2. W.R. Roush, F.V. González, J.H. McKerrow and E. Hansell, Design and Synthesis of Dipeptidyl a¢,b¢-Epoxy Ketones, Potent Irreversible Inhibitors of the Cysteine Protease Cruzain, Bioorg. Med. Chem. Lett., 8, 2809 (1998); https://doi.org/10.1016/S0960-894X(98)00494-6.
  3. W.R. Roush, J. Cheng, B. Knapp-Reed, A. Alvarez-Hernandez, J.H. McKerrow, E. Hansell and J.C. Engel, Potent Second Generation Vinyl Sulfonamide Inhibitors of the Trypanosomal Cysteine Protease Cruzain, Bioorg. Med. Chem. Lett., 11, 2759 (2001); https://doi.org/10.1016/S0960-894X(01)00566-2.
  4. P.M. Selzer, S. Pingel, I. Hsieh, B. Ugele, V.J. Chan, J.C. Engel, M. Bogyo, D.G. Russell, J.A. Sakanari and J.H. McKerrow, Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target, Proc. Natl. Acad. Sci. USA, 96, 11015 (1999); https://doi.org/10.1073/pnas.96.20.11015.
  5. P.V. Desai, A. Patny, Y. Sabnis, B. Tekwani, J. Gut, P. Rosenthal, A. Srivastava and M. Avery, Identification of Novel Parasitic Cysteine Protease Inhibitors Using Virtual Screening. 1. The ChemBridge Database, J. Med. Chem., 47, 6609 (2004); https://doi.org/10.1021/jm0493717.
  6. A.L. Omara-Opyene and L. Gedamu, Molecular Cloning, Charac-terization and Overexpression of Two Distinct Cysteine Protease cDNAs from Leishmania donovani chagasi, Mol. Biochem. Parasitol., 90, 247 (1997); https://doi.org/10.1016/S0166-6851(97)00158-8.
  7. M.E. McGrath, A.E. Eakin, J.C. Engel, J.H. McKerrow, C.S. Craik and R.J. Fletterick, The Crystal Structure of Cruzain: A Therapeutic Target for Chagas' Disease, J. Mol. Biol., 247, 251 (1995); https://doi.org/10.1006/jmbi.1994.0137.
  8. C. Mandal, MODELYN – A Molecular Modelling Program Version PC-1.0, Indian Copyright No. 9/98 (1998).
  9. J. Aqvist, C. Medina and J.-E. Samuelsson, A New Method for Predicting Binding Affinity in Computer-Aided Drug Design, Protein Eng. Design Select., 7, 385 (1994); https://doi.org/10.1093/protein/7.3.385.
  10. J. Aqvist and S.L. Mowbray, Sugar Recognition by a Glucose/Galactose Receptor. Evaluation of Binding Energetics from Molecular Dynamics Simulations, J. Biol. Chem., 270, 9978 (1995); https://doi.org/10.1074/jbc.270.17.9978.
  11. J. Hulten, N.M. Bonham, U. Nillroth, T. Hansson, G. Zuccarello, A. Bouzide, J. Åqvist, B. Classon, U.H. Danielson, A. Karlen, I. Kvarnstrom, B. Samuelsson and A. Hallberg, Cyclic HIV-1 Protease Inhibitors Derived from Mannitol: Synthesis, Inhibitory Potencies and Computa-tional Predictions of Binding Affinities, J. Med. Chem., 40, 885 (1997); https://doi.org/10.1021/jm960728j.
  12. C. Mandal, B.D. Kingery, J.M. Anchin, S. Subramaniam and D.S. Linthicum, ABGEN: A Knowledge-Based Automated Approach for Antibody Structure Modeling, Nat. Biotechnol., 14, 323 (1996); https://doi.org/10.1038/nbt0396-323.
  13. J.D. Thompson, D.G. Higgins and T.J. Gibson, CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 22, 4673 (1994); https://doi.org/10.1093/nar/22.22.4673.
  14. R. Koradi, M. Billeter and K. Wuthrich, MOLMOL: A Program for Display and Analysis of Macromolecular Structures, J. Mol. Graph., 14, 51 (1996); https://doi.org/10.1016/0263-7855(96)00009-4.
  15. R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944.
  16. I.W. Davis, L.W. Murray, J.S. Richardson and D.C. Richardson, MOLPROBITY: Structure Validation and All-atom Contact Analysis for Nucleic Acids and their Complexes, Nucleic Acids Res., 32, W615 (2004); https://doi.org/10.1093/nar/gkh398.
  17. S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman, Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 25, 3389 (1997); https://doi.org/10.1093/nar/25.17.3389.
  18. S.A. Gillmor, C.S. Craik and R.J. Fletterick, Structural Determinants of Specificity in the Cysteine Protease Cruzain, Protein Sci., 6, 1603 (1997); https://doi.org/10.1002/pro.5560060801.
  19. S. Costanzi, B.V. Joshi, S. Maddileti, L. Mamedova, M.J. Gonzalez-Moa, V.E. Marquez, T.K. Harden and K.A. Jacobson, Human P2Y6 Receptor: Molecular Modeling Leads to the Rational Design of a Novel Agonist Based on a Unique Conformational Preference, J. Med. Chem., 48, 8108 (2005); https://doi.org/10.1021/jm050911p.
  20. C.R. Caffrey, M. Schanz, J. Nkemgu-Njinkeng, M. Brush, E. Hansell, F.E. Cohen, T.M. Flaherty, J.H. McKerrow and D. Steverding, Screening of Acyl Hydrazide Proteinase Inhibitors for Antiparasitic Activity against Trypanosoma brucei, Int. J. Antimicrob. Agents, 19, 227 (2002); https://doi.org/10.1016/S0924-8579(01)00488-5.
  21. I. Chiyanzu, E. Hansell, J. Gut, P.J. Rosenthal, J.H. McKerrow and K. Chibale, Synthesis and Evaluation of Isatins and Thiosemicarbazone Derivatives against Cruzain, Falcipain-2 and Rhodesain, Bioorg. Med. Chem. Lett., 13, 3527 (2003); https://doi.org/10.1016/S0960-894X(03)00756-X.
  22. X. Du, C. Guo, E. Hansell, P.S. Doyle, C.R. Caffrey, T.P. Holler, J.H. McKerrow and F.E. Cohen, Synthesis and Structure-Activity Relation-ship Study of Potent Trypanocidal Thiosemicarbazone Inhibitors of the Trypanosomal Cysteine Protease Cruzain, J. Med. Chem., 45, 2695 (2002); https://doi.org/10.1021/jm010459j.
  23. N. Fujii, J.P. Mallari, E.J. Hansell, Z. Mackey, P. Doyle, Y.M. Zhou, J. Gut, P.J. Rosenthal, J.H. McKerrow and R.K. Guy, Discovery of Potent Thiosemicarbazone Inhibitors of Rhodesain and Cruzain, Bioorg. Med. Chem. Lett., 15, 121 (2005); https://doi.org/10.1016/j.bmcl.2004.10.023.
  24. D.C. Greenbaum, Z. Mackey, E. Hansell, P. Doyle, J. Gut, C.R. Caffrey, J. Lehrman, P.J. Rosenthal, J.H. McKerrow and K. Chibale, Synthesis and Structure-Activity Relationships of Parasiticidal Thiosemicarbazone Cysteine Protease Inhibitors against Plasmodium falciparum, Trypanosoma brucei and Trypanosoma cruzi, J. Med. Chem., 47, 3212 (2004); https://doi.org/10.1021/jm030549j.
  25. K.A. Scheidt, W.R. Roush, J.H. McKerrow, P.M. Selzer, E. Hansell and P.J. Rosenthal, Structure-based Design, Synthesis and Evaluation of Conformationally Constrained Cysteine Protease Inhibitors, Bioorg. Med. Chem., 6, 2477 (1998); https://doi.org/10.1016/S0968-0896(98)80022-9.
  26. S. Batra, Y.A. Sabnis, P.J. Rosenthal and M.A. Avery, Structure-Based Approach to Falcipain-2 Inhibitors: Synthesis and Biological Evaluation of 1,6,7-Trisubstituted Dihydroisoquinolines and Isoquinolines, Bioorg. Med. Chem., 11, 2293 (2003); https://doi.org/10.1016/S0968-0896(03)00117-2.
  27. J.R. Somoza, J.T. Palmer and J.D. Ho, The Crystal Structure of Human Cathepsin F and Its Implications for the Development of Novel Immunomodulators, J. Mol. Biol., 322, 559 (2002); https://doi.org/10.1016/S0022-2836(02)00780-5.
  28. E. Altmann, S.W. Cowan-Jacob and M. Missbach, Novel Purine Nitrile Derived Inhibitors of the Cysteine Protease Cathepsin K, J. Med. Chem., 47, 5833 (2004); https://doi.org/10.1021/jm0493111.
  29. J.R. Somoza, H. Zhan, K.K. Bowman, L. Yu, K.D. Mortara, J.T. Palmer, J.M. Clark and M.E. Mcgrath, Crystal Structure of Human Cathepsin V, Biochemistry, 39, 12543 (2000); https://doi.org/10.1021/bi000951p.
  30. Y.D. Ward, D.S. Thomson, L.L. Frye, C.L. Cywin, T. Morwick, M.J. Emmanuel, R. Zindell, D. McNeil, Y. Bekkali, M. Hrapchak, M. DeTuri, K. Crane, D. White, S. Pav, Y. Wang, M.-H. Hao, C.A. Grygon, M.E. Labadia, D.M. Freeman, W. Davidson, J.L. Hopkins, M.L. Brown and D.M. Spero, Design and Synthesis of Dipeptide Nitriles as Reversible and Potent Cathepsin S Inhibitors, J. Med. Chem., 45, 5471 (2002); https://doi.org/10.1021/jm020209i.
  31. D. Puvanendrampillai and J.B.O. Mitchell, Protein Ligand Database (PLD): Additional Understanding of the Nature and Specificity of Protein–Ligand Complexes, Bioinformatics, 19, 1856 (2003); https://doi.org/10.1093/bioinformatics/btg243.