Main Article Content
Abstract
A highly functionalized heterocyclic compounds series were synthesized, characterized and tested for biological evaluation against bacteria and fungus. This novel synthetic route involves Schiff base formation reaction of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde with 4-(4-aminophenyl)morpholin-3-one in the presence of base and methanol as a solvent in good yield and high purity. All the synthesized compounds were characterized using IR, 1H NMR and mass spectroscopic techniques. All the compound screened for antimicrobial activity against standard drugs.
Keywords
Article Details
References
- K. Sztanke, A. Maziarka, A. Osinka and M. Sztanke, An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in vitro, Bioorg. Med. Chem., 21, 3648 (2013); https://doi.org/10.1016/j.bmc.2013.04.037.
- C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and Â. de Fátima, Schiff bases: A Short Review of Their Antimicrobial Activities, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004.
- P. Panneerselvam, M.G. Priya, N.R. Kumar and G. Saravanan, Synthesis and Pharmacological Evaluation of Schiff Bases of 4-(2-Aminophenyl)-morpholines, Indian J. Pharm. Sci., 71, 428 (2009); https://doi.org/10.4103/0250-474X.57292.
- M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015.
- T. Ren, J. Wang, G. Li and Y. Li, Synthesis, Characterization and in vitro Antitumor Activity of Novel Schiff Bases Containing Pyrazole Group, Asian J. Chem., 26, 8309 (2014); https://doi.org/10.14233/ajchem.2014.16893.
- S. Gama, F. Mendes, F. Marques, I.C. Santos, M.F. Carvalho, I. Correia, J.C. Pessoa, I. Santos and A. Paulo, Copper(II) Complexes with Tridentate Pyrazole-Based Ligands: Synthesis, Characterization, DNA Cleavage Activity and Cytotoxicity, J. Inorg. Biochem., 105, 637 (2011); https://doi.org/10.1016/j.jinorgbio.2011.01.013.
- S. Abu Bakr, S.S. Abd El-Karim, M.M. Said and M.M. Youns, Synthesis and Anticancer Evaluation of Novel Isoxazole/Pyrazole Derivatives, Res. Chem. Intermed., 42, 1387 (2016); https://doi.org/10.1007/s11164-015-2091-5.
- N.J.P. Subhashini, J. Amanaganti and P.A. Nagarjuna, Synthesis, Characterization and Biological Activity of (N1E,N2Z)-N1,N2-Bis((1-phenyl-3-aryl-1H-pyrazol-4-yl)methylene)benzene-1,2-diamines, J. Applicable Chem., 3, 2358 (2014).
- A.L. Iglesias, G. Aguirre, R. Somanathan and M. Parra-Hake, New Chiral Schiff Base–Cu(II) Complexes as Cyclopropanation Catalysts, Polyhedron, 23, 3051 (2004); https://doi.org/10.1016/j.poly.2004.09.007.
- A.L. Iglesias and J.J. García, Homogeneous Hydrogenation of Fluoroaromatic Imines with Ni Compounds, Evidence for h2-C=N Intermediate in the Catalytic Cycle, J. Mol. Catal. Chem., 298, 51 (2009); https://doi.org/10.1016/j.molcata.2008.10.003.
- A.L. Iglesias, M. Muñoz-Hernández and J.J. García, Fluoro Aromatic Imine Nickel(0) Complexes: Synthesis and Structural Studies, J. Organomet. Chem., 692, 3498 (2007); https://doi.org/10.1016/j.jorganchem.2007.04.026.
- L.J. Villarreal-Gómez, I.E. Soria-Mercado, G. Guerra-Rivas and N.E. Ayala-Sánchez, Antibacterial and Anticancer Activity of Seaweeds and Bacteria Associated with their Surface, Rev. Biol. Mar. Oceanogr., 45, 267 (2010); https://doi.org/10.4067/S0718-19572010000200008.
- V.C. Gibson, C. Redshaw and G.A. Solan, Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to New Families of Catalysts, Chem. Rev., 107, 1745 (2007); https://doi.org/10.1021/cr068437y.
- S.C. Bart, L. Eckhard, B.K. Wieghardt and P.J. Chirik, Neutral-Ligand Complexes of Bis(imino)pyridine Iron: Synthesis, Structure and Spectroscopy, Inorg. Chem., 46, 7055 (2007); https://doi.org/10.1021/ic700869h.
- J.R. Zgoda and J.R. Porter, A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi, A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi, Pharm. Biol., 39, 221 (2001); https://doi.org/10.1076/phbi.39.3.221.5934.
References
K. Sztanke, A. Maziarka, A. Osinka and M. Sztanke, An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in vitro, Bioorg. Med. Chem., 21, 3648 (2013); https://doi.org/10.1016/j.bmc.2013.04.037.
C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and Â. de Fátima, Schiff bases: A Short Review of Their Antimicrobial Activities, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004.
P. Panneerselvam, M.G. Priya, N.R. Kumar and G. Saravanan, Synthesis and Pharmacological Evaluation of Schiff Bases of 4-(2-Aminophenyl)-morpholines, Indian J. Pharm. Sci., 71, 428 (2009); https://doi.org/10.4103/0250-474X.57292.
M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015.
T. Ren, J. Wang, G. Li and Y. Li, Synthesis, Characterization and in vitro Antitumor Activity of Novel Schiff Bases Containing Pyrazole Group, Asian J. Chem., 26, 8309 (2014); https://doi.org/10.14233/ajchem.2014.16893.
S. Gama, F. Mendes, F. Marques, I.C. Santos, M.F. Carvalho, I. Correia, J.C. Pessoa, I. Santos and A. Paulo, Copper(II) Complexes with Tridentate Pyrazole-Based Ligands: Synthesis, Characterization, DNA Cleavage Activity and Cytotoxicity, J. Inorg. Biochem., 105, 637 (2011); https://doi.org/10.1016/j.jinorgbio.2011.01.013.
S. Abu Bakr, S.S. Abd El-Karim, M.M. Said and M.M. Youns, Synthesis and Anticancer Evaluation of Novel Isoxazole/Pyrazole Derivatives, Res. Chem. Intermed., 42, 1387 (2016); https://doi.org/10.1007/s11164-015-2091-5.
N.J.P. Subhashini, J. Amanaganti and P.A. Nagarjuna, Synthesis, Characterization and Biological Activity of (N1E,N2Z)-N1,N2-Bis((1-phenyl-3-aryl-1H-pyrazol-4-yl)methylene)benzene-1,2-diamines, J. Applicable Chem., 3, 2358 (2014).
A.L. Iglesias, G. Aguirre, R. Somanathan and M. Parra-Hake, New Chiral Schiff Base–Cu(II) Complexes as Cyclopropanation Catalysts, Polyhedron, 23, 3051 (2004); https://doi.org/10.1016/j.poly.2004.09.007.
A.L. Iglesias and J.J. García, Homogeneous Hydrogenation of Fluoroaromatic Imines with Ni Compounds, Evidence for h2-C=N Intermediate in the Catalytic Cycle, J. Mol. Catal. Chem., 298, 51 (2009); https://doi.org/10.1016/j.molcata.2008.10.003.
A.L. Iglesias, M. Muñoz-Hernández and J.J. García, Fluoro Aromatic Imine Nickel(0) Complexes: Synthesis and Structural Studies, J. Organomet. Chem., 692, 3498 (2007); https://doi.org/10.1016/j.jorganchem.2007.04.026.
L.J. Villarreal-Gómez, I.E. Soria-Mercado, G. Guerra-Rivas and N.E. Ayala-Sánchez, Antibacterial and Anticancer Activity of Seaweeds and Bacteria Associated with their Surface, Rev. Biol. Mar. Oceanogr., 45, 267 (2010); https://doi.org/10.4067/S0718-19572010000200008.
V.C. Gibson, C. Redshaw and G.A. Solan, Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to New Families of Catalysts, Chem. Rev., 107, 1745 (2007); https://doi.org/10.1021/cr068437y.
S.C. Bart, L. Eckhard, B.K. Wieghardt and P.J. Chirik, Neutral-Ligand Complexes of Bis(imino)pyridine Iron: Synthesis, Structure and Spectroscopy, Inorg. Chem., 46, 7055 (2007); https://doi.org/10.1021/ic700869h.
J.R. Zgoda and J.R. Porter, A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi, A Convenient Microdilution Method for Screening Natural Products Against Bacteria and Fungi, Pharm. Biol., 39, 221 (2001); https://doi.org/10.1076/phbi.39.3.221.5934.