Main Article Content

Abstract

Dioscorea bulbifera is a true yam species which is famous for its medicinal values. The plant is reported to possess anti-inflammatory, antidiabetic and antitumor properties. It has also been found that the D. bulbifera tuber extract is effective in synthesizing silver nanoparticles (AgNPs) because of its unique phytochemistry However, the plant is available in the rainy season only hence in this study in vitro system for maintenance of the D. bulbifera was developed using three media combinations namely basal Murashige and Skoog medium (MS), MS medium supplemented with 5 ppm kinetin (AN) and MS medium enriched with CuSO4·5H2O (CU). Aqueous extracts of these in vitro grown plantlets were found to have significant contents of phenolics, flavonoids and starch. These extracts were found to be effective in rapid synthesis of the AgNPs in 5 h with the optimum temperature of 50 °C and salt concentration equal to 5 mM. Fourier transformed infrared spectroscopy (FTIR) analysis revealed that the polyols in these extracts are responsible for bioreduction. AgNPs synthesized from extracts of Dioscorea bulbifera were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). AgNPs from plantlets growing on MS medium were found to have the smallest size and thus showed maximum antibacterial and antibiofilm potential towards Pseudomonas aeruginosa and Vibrio harveyi. The AgNPs synthesized from the extracts of plant-lets growing on AN and CU medium were also found to be effective. The results also suggested the presence of variation in the mechanism of biofilm inhibition by AgNPs against these two bacteria as biofilm inhibition was found to be greater in Vibrio harveyi. To best of our knowledge no such study has been done before with the in vitro grown Dioscorea bulbifera.

Keywords

Benzimidazole Fluorine Antimicrobial activity

Article Details

How to Cite
Joshi, K., Ghosh, S., & Dhepe, A. (2019). Greens Synthesis of Antimicrobial Nanosilver using in vitro Cultured Dioscorea bulbifera. Asian Journal of Organic & Medicinal Chemistry, 4(4), 222–227. https://doi.org/10.14233/ajomc.2019.AJOMC-P205

References

  1. H.Y. Gao, B.L. Hou, M. Kuroyanagi and L. Wu, Constituents from Anti-tumor Promoting Active Part of Dioscorea bulbifera L. In JB6 Mouse Epidermal Cells, Asian J. Tradit. Med., 2, 104 (2007).
  2. S. Ghosh, M. Ahire, S. Patil, A. Jabgunde, M.B. Dusane, B.N. Joshi, K. Pardesi, S. Jachak, D.D. Dhavale and B.A. Chopade, Antidiabetic Activity of Gnidia glauca and Dioscorea bulbifera: Potent Amylase and Glucosidase Inhibitors, Evid. Based Complement. Alternat. Med., 2012, 1 (2012); https://doi.org/10.1155/2012/929051.
  3. A.H.R. Vasanthi, K.S. Jayachandran and N. Gurusamy, Steroidal Saponin Diosgenin from Dioscorea bulbifera Protects Cardiac Cells from Hypoxia-reoxygenation Injury through Modulation of Pro-Survival and Pro-Death Molecules, Pharmacogn. Mag., 12, S14 (2016); https://doi.org/10.4103/0973-1296.176114.
  4. J. Duke and J. DuCellier, Handbook of Alternative Cash Crops, CRC Press, pp. 230 (1993).
  5. C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer Verlag: New York (2007).
  6. S. Ghosh, V.S. Parihar, P. More, D.D. Dhavale and B.A. Chopade, Phyto-chemistry and Therapeutic Potential of Medicinal Plant: Dioscorea bulbifera, Med. Chem., 5, 351 (2015); https://doi.org/10.4172/2161-0444.1000259.
  7. S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S. Cameotra, J. Bellare, D. Dhavale, A. Jabgunde and B. Chopade, Synthesis of Silver Nanoparticles using Dioscorea Bulbifera Tuber Extract and Evaluation of its Synergistic Potential in Combination with Antimicrobial Agents, Int. J. Nanomed., 7, 483 (2012); https://doi.org/10.2147/IJN.S24793.
  8. S. Ghosh, R. Nitnavare, A. Dewle, G. Tomar, R. Chippalkatti, P. More, R. Kitture and S. Kale, J. Bellare and B. Chopade, Novel Platinum–Palladium Bimetallic Nanoparticles Synthesized by Dioscorea bulbifera: Anticancer and Antioxidant Activities, Int. J. Nanomed., 10, 7477 (2015); https://doi.org/10.2147/IJN.S91579.
  9. V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44.
  10. W. Liu, D. Yin, N. Li, X. Hou, D. Wang, D. Li and J. Liu, Influence of Environmental Factors on the Active Substance Production and Anti-oxidant Activity in Potentilla fruticosa L. and Its Quality Assessment, Sci. Rep., 6, 25951 (2016); https://doi.org/10.1038/srep28591.
  11. B. Pant, Advances in Experimental Medicine and Biology, Spinger: India (2014).
  12. H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice and S. Kjelleberg, Biofilms: An Emergent Form of Bacterial Life, Nat. Rev. Microbiol., 14, 563 (2016); https://doi.org/10.1038/nrmicro.2016.94.
  13. N. Høiby, O. Ciofu and T. Bjarnsholt, Pseudomonas aeruginosa Biofilms in Cystic Fibrosis, Future Microbiol., 5, 1663 (2010); https://doi.org/10.2217/fmb.10.125.
  14. B. Austin and X.H. Zhang, Vibrio harveyi: A Significant Pathogen of Marine Vertebrates and Invertebrates, Lett. Appl. Microbiol., 43, 119 (2006); https://doi.org/10.1111/j.1472-765X.2006.01989.x.
  15. A. Narula, S. Kumar and P.S. Srivastava, Genetic Fidelity of in vitro Regenerants, Encapsulation of Shoot Tips and High Diosgenin Content in Dioscorea bulbifera L., A Potential Alternative Source of Diosgenin, Biotechnol. Lett., 29, 623 (2007); https://doi.org/10.1007/s10529-006-9276-3.
  16. A. Narula, S. Kumar, K.C. Bansal and P.S. Srivastava, in vitro Micropropagation, Differentiation of Aerial Bulbils and Tubers and Diosgenin Content in Dioscorea bulbifera, Planta Med., 69, 778 (2003); https://doi.org/10.1055/s-2003-42781.
  17. K. Wolfe, X. Wu and R.H. Liu, Antioxidant Activity of Apple Peels, J. Agric. Food Chem., 51, 609 (2003); https://doi.org/10.1021/jf020782a.
  18. A. Luximon-Ramma, T. Bahorun, M.A. Soobrattee and O.I. Aruoma, Antioxidant Activities of Phenolic, Proanthocyanidin and Flavonoid Components in Extracts of Cassia fistula, J. Agric. Food Chem., 50, 5042 (2002); https://doi.org/10.1021/jf0201172.
  19. B. Thayumanavan and S. Sadasivam, Physicohemical Basis for the Preferential uses of Certain Rice Varieties, Qual. Plant Foods Hum. Nutr., 34, 253 (1984); https://doi.org/10.1007/BF01126554.
  20. G.L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
  21. S.C. Slack and W.J. Mader, Colorimetric Assay for Diosgenin and Related Compounds, Anal. Chem., 33, 625 (1961); https://doi.org/10.1021/ac60172a044.
  22. S. Ghosh, S. Jagtap, P. More, U.J. Shete, N.O. Maheshwari, S.J. Rao, R. Kitture, S. Kale, J. Bellare, S. Patil, J.K. Pal and B.A. Chopade, Dioscorea bulbifera Mediated Synthesis of Novel AucoreAgshell Nano-particles with Potent Antibiofilm and Antileishmanial Activity, J. Nanomater., 2015, Article ID 562938 (2015); https://doi.org/10.1155/2015/562938.
  23. M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, S. Kunzelman, S.M. Hussain and R.S. Varma, Synthesis, Characterization and Biocom-patibility of “Green” Synthesized Silver Nanoparticles using Tea Polyphenols, Nanoscale, 2, 763 (2010); https://doi.org/10.1039/c0nr00046a.
  24. H. Huang and X. Yang, Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A Green Method, Carbohydr. Res., 339, 2627 (2004); https://doi.org/10.1016/j.carres.2004.08.005.
  25. D. Wei and W. Qian, Facile Synthesis of Ag and Au Nanoparticles Utilizing Chitosan as a Mediator Agent, Colloids Surf. B Biointerfaces, 62, 136 (2008); https://doi.org/10.1016/j.colsurfb.2007.09.030.
  26. K.T. Nam, Y.J. Lee, E.M. Krauland, S.T. Kottmann and A.M. Belcher, Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds, ACS Nano, 2, 1480 (2008); https://doi.org/10.1021/nn800018n.
  27. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli and M. Galdiero, Silver Nanoparticles as Potential Antibacterial Agents, Molecules, 20, 8856 (2015); https://doi.org/10.3390/molecules20058856.
  28. F. Martinez-Gutierrez, L. Boegli, A. Agostinho, E.M. Sánchez, H. Bach, F. Ruiz and G. James, Anti-Biofilm Activity of Silver Nanoparticles Against Different Microorganisms, The J. Bioadhesion Biofilm Res., 29, 651 (2013); https://doi.org/10.1080/08927014.2013.794225.
  29. D. Ahmed, A. Anwar, A.K. Khan, A. Ahmed, M.R. Shah and N.A. Khan, Size Selectivity in Antibiofilm Activity of 3-(Diphenylphosphino)-propanoic Acid Coated Gold Nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans, AMB Express, 7, 210 (2017); https://doi.org/10.1186/s13568-017-0515-x.