Main Article Content
Abstract
A new series of tryptanthrin analogues have been synthesized as potential antimalarial molecules. Synthesis of tryptanthrin aminoalkyl derivatives have been achieved via alkylation of oxime functionality of tryptanthrin derivatives by various alkyl amino pharmacophoric chains. A series of 21 tryptanthrin aminoalkyl analogues were synthesized with variation in both parent natural alkaloid and in aminoalkyl side chains. Synthesized compounds were fully characterized with 1H & 13C NMR, IR spectroscopy. Further all the members were screened for their antimalarial potential against Plasmoum falciparum in both sensitive (3D7) and in resistant (k1) strains. Most of the screened compounds were exhibited potent antimalarial activity in both strains. Compounds (5m, 3c and 5l) having nitro group at the 8 position in tryptanthrin framework were most promising compounds in series (IC50 = 10 nm) with IC50 value as low as 10 nm comparable to chloroquine. These compounds were also tested for their toxic effect and found to be highly safe with high value of SI index.
Keywords
Article Details
References
- C.E. Schiaffo, M. Rottman, S. Wittlin and P.H. Dussault, 3-Alkoxy-1,2-Dioxolanes: Synthesis and Evaluation as Potential Antimalarial Agents, ACS Med. Chem. Lett., 2, 316 (2011); https://doi.org/10.1021/ml100308d
- V. Kumar, A. Mahajan and K. Chibale, Synthetic Medicinal Chemistry of Selected Antimalarial Natural Products, Bioorg. Med. Chem., 17, 2236 (2009); https://doi.org/10.1016/j.bmc.2008.10.072
- D. Gonzalez-Cabrera, F. Douelle, T.-S. Feng, A.T. Nchinda, Y. Younis, K.L. White, Q. Wu, E. Ryan, J.N. Burrows, D. Waterson, M.J. Witty, S. Wittlin, S.A. Charman and K. Chibale, Novel Orally Active Antimalarial Thiazoles, J. Med. Chem., 54, 7713 (2011); https://doi.org/10.1021/jm201108k
- S. Zhu, Q. Zhang, C. Gudise, L. Wei, E. Smith and Y. Zeng, Synthesis and Biological Evaluation of Febrifugine Analogues as Potential Anti-malarial Agents, Bioorg. Med. Chem., 17, 4496 (2009); https://doi.org/10.1016/j.bmc.2009.05.011
- E. Fernández-Álvaro, W.D. Hong, G.L. Nixon, P.M. O’Neill and F. Calderón, Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action, J. Med. Chem., 59, 5587 (2016); https://doi.org/10.1021/acs.jmedchem.5b01485
- World Malaria Report, World Health Organization (2018).
- R.N. Price and F. Nosten, Single-Dose Radical Cure of Plasmodium vivax: A Step Closer, Lancet, 383, 1020 (2014); https://doi.org/10.1016/S0140-6736(13)62672-0
- K.K. Roy, Targeting the Active Sites of Malarial Proteases for Anti-malarial Drug Discovery: Approaches, Progress and Challenges, Int. J. Antimicrob. Agents, 50, 287 (2017); https://doi.org/10.1016/j.ijantimicag.2017.04.006
- R. Bobrovs, K. Jaudzems and A. Jirgensons, Exploiting Structural Dynamics to Design Open-Flap Inhibitors of Malarial Aspartic Proteases, J. Med. Chem., 62, 8931 (2019); https://doi.org/10.1021/acs.jmedchem.9b00184
- R. Banerjee, J. Liu, W. Beatty, L. Pelosof, M. Klemba and D.E. Goldberg, Four Plasmepsins are Active in the Plasmodium falciparum Food Vacuole, Including a Protease with an Active-site Histidine, Proc. Natl. Acad. Sci. USA, 99, 990 (2002); https://doi.org/10.1073/pnas.022630099
- A.-C. Uhlemann and D.A. Fidock, Loss of Malarial Susceptibility to Artemisinin in Thailand, Lancet, 379, 1928 (2012); https://doi.org/10.1016/S0140-6736(12)60488-7
- A. Sofowora, Medicinal Plants and Traditional Medicine in Africa, John Wiley & Sons: Chichester, UK, edn 1, pp 221-223 (1982).
- K. Cimanga, L. Pieters, M. Claeys, D. Berghe and A. Vlietinck, Biological Activities of Cryptolepine, An Alkaloid from Cryptolepis sanguinolenta, Planta Med., 57(S 2), A98 (1991); https://doi.org/10.1055/s-2006-960380
- D.J. Newman and G.M. Cragg, Natural Products as Sources of New Drugs over the Last 25 Years, J. Nat. Prod., 70, 461 (2007); https://doi.org/10.1021/np068054v
- K.H.J. Lee, Discovery and Development of Natural Product-Derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach, Nat. Prod. Prod., 73, 500 (2010); https://doi.org/10.1021/np900821e
- N.J. White, Qinghaosu (Artemisinin): The Price of Success, Science, 320, 330 (2008); https://doi.org/10.1126/science.1155165
- J. Achan, A.O. Talisuna, A. Erhart, A. Yeka, J.K. Tibenderana, F.N. Baliraine, P.J. Rosenthal and U. D’Alessandro, Quinine, An Old Anti-Malarial Drug in a Modern World: Role in the Treatment of Malaria, Malar. J., 10, 144 (2011); https://doi.org/10.1186/1475-2875-10-144
- A. Kumar, S. Katiyar, A. Agarwal and M.P.S. Chauhan, Perspective in Antimalarial Chemotherapy, Curr. Med. Chem., 10, 1137 (2003); https://doi.org/10.2174/0929867033457494
- H. Noedl, Y. Se, K. Schaecher, B.L. Smith, D. Socheat and M.M. Fukuda, Evidence of Artemisinin-Resistant Malaria in Western Cambodia, N. Engl. J. Med., 359, 2619 (2008); https://doi.org/10.1056/NEJMc0805011
- Y. Tang, Y. Dong and J.L. Vennerstrom, Synthetic Peroxides as Antimalarials, Med. Res. Rev., 24, 425 (2004); https://doi.org/10.1002/med.10066
- A.J. Lin, D.L. Klayman and W.K. Milhous, Antimalarial Activity of New Water-soluble Dihydroartemisinin Derivatives, J. Med. Chem., 30, 2147 (1987) https://doi.org/10.1021/jm00394a037
- V.W.-W. Yam, Molecular Design of Transition Metal Alkynyl Complexes as Building Blocks for Luminescent Metal-Based Materials: Structural and Photophysical Aspects, Acc. Chem. Res., 35, 555 (2002); https://doi.org/10.1021/ar0000758
- G.H. Posner, C.H. Oh, D. Wang, L. Gerena, W.K. Milhous, S.R. Meshnick and W. Asawamahasadka, Mechanism-Based Design, Synthesis and in vitro Antimalarial Testing of New 4-Methylated Trioxanes Structurally Related to Artemisinin: The Importance of a Carbon-Centered Radical for Antimalarial Activity, J. Med. Chem., 37, 1256 (1994); https://doi.org/10.1021/jm00035a003
- C.M. Martínez-Viturro and D. Domínguez, Synthesis of the Anti-tumoural Agent Batracylin and Related Isoindolo[1,2-b]quinazolin-12(10H)-ones, Tetrahedron Lett., 48, 1023 (2007); https://doi.org/10.1016/j.tetlet.2006.11.168
- K. Dzierzbicka, P. Trzonkowski, P.L. Sewerynek and A. Myœliwski, Synthesis and Cytotoxic Activity of Conjugates of Muramyl and Normuramyl Dipeptides with Batracylin Derivatives, J. Med. Chem., 46, 978 (2003); https://doi.org/10.1021/jm021067v
- S.-T. Yu, T.-M. Chen, S.-Y. Tseng and Y.-H. Chen, Tryptanthrin Inhibits MDR1 and Reverses Doxorubicin Resistance in Breast Cancer Cells, Biochem. Biophys. Res. Commun., 358, 79 (2007); https://doi.org/10.1016/j.bbrc.2007.04.107
- J. Scovill, E. Blank, M. Konnick, E. Nenortas and T. Shapiro, Anti-trypanosomal Activities of Tryptanthrins, Antimicrob. Agents Chemother., 46, 882 (2002); https://doi.org/10.1128/AAC.46.3.882-883.2002
- A.K. Bhattacharjee, D.J. Skanchy, B.T. Jennings, H. Hudson, J.J. Brendle and K.A. Werbovetz, Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]-quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity using Quantum Chemical, Cyclic Voltammetry and 3D-QSAR Catalyst Procedures, Bioorg. Med. Chem., 10, 1979 (2002); https://doi.org/10.1016/S0968-0896(02)00013-5
- H. Danz, S. Stoyanova, O.A.R. Thomet, H.-U. Simon, G. Dannhardt, H. Ulbrich and M. Hamburger, Inhibitory Activity of Tryptanthrin on Prostaglandin and Leukotriene Synthesis, Planta Med., 68, 875 (2002); https://doi.org/10.1055/s-2002-34922
- W.R. Bowman, M.R.J. Elsegood, T. Stein and G.W. Weaver, Radical Reactions with 3H-quinazolin-4-ones: Synthesis of Deoxyvasicinone, Mackinazolinone, Luotonin A, Rutaecarpine and Tryptanthrin, Org. Biomol. Chem., 5, 103 (2007); https://doi.org/10.1039/B614075K
- A. Kumar, V.D. Tripathi and P. Kumar, b-Cyclodextrin catalyzed Synthesis of Tryptanthrin in Water, Green Chem., 13, 51 (2011); https://doi.org/10.1039/C0GC00523A
References
C.E. Schiaffo, M. Rottman, S. Wittlin and P.H. Dussault, 3-Alkoxy-1,2-Dioxolanes: Synthesis and Evaluation as Potential Antimalarial Agents, ACS Med. Chem. Lett., 2, 316 (2011); https://doi.org/10.1021/ml100308d
V. Kumar, A. Mahajan and K. Chibale, Synthetic Medicinal Chemistry of Selected Antimalarial Natural Products, Bioorg. Med. Chem., 17, 2236 (2009); https://doi.org/10.1016/j.bmc.2008.10.072
D. Gonzalez-Cabrera, F. Douelle, T.-S. Feng, A.T. Nchinda, Y. Younis, K.L. White, Q. Wu, E. Ryan, J.N. Burrows, D. Waterson, M.J. Witty, S. Wittlin, S.A. Charman and K. Chibale, Novel Orally Active Antimalarial Thiazoles, J. Med. Chem., 54, 7713 (2011); https://doi.org/10.1021/jm201108k
S. Zhu, Q. Zhang, C. Gudise, L. Wei, E. Smith and Y. Zeng, Synthesis and Biological Evaluation of Febrifugine Analogues as Potential Anti-malarial Agents, Bioorg. Med. Chem., 17, 4496 (2009); https://doi.org/10.1016/j.bmc.2009.05.011
E. Fernández-Álvaro, W.D. Hong, G.L. Nixon, P.M. O’Neill and F. Calderón, Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action, J. Med. Chem., 59, 5587 (2016); https://doi.org/10.1021/acs.jmedchem.5b01485
World Malaria Report, World Health Organization (2018).
R.N. Price and F. Nosten, Single-Dose Radical Cure of Plasmodium vivax: A Step Closer, Lancet, 383, 1020 (2014); https://doi.org/10.1016/S0140-6736(13)62672-0
K.K. Roy, Targeting the Active Sites of Malarial Proteases for Anti-malarial Drug Discovery: Approaches, Progress and Challenges, Int. J. Antimicrob. Agents, 50, 287 (2017); https://doi.org/10.1016/j.ijantimicag.2017.04.006
R. Bobrovs, K. Jaudzems and A. Jirgensons, Exploiting Structural Dynamics to Design Open-Flap Inhibitors of Malarial Aspartic Proteases, J. Med. Chem., 62, 8931 (2019); https://doi.org/10.1021/acs.jmedchem.9b00184
R. Banerjee, J. Liu, W. Beatty, L. Pelosof, M. Klemba and D.E. Goldberg, Four Plasmepsins are Active in the Plasmodium falciparum Food Vacuole, Including a Protease with an Active-site Histidine, Proc. Natl. Acad. Sci. USA, 99, 990 (2002); https://doi.org/10.1073/pnas.022630099
A.-C. Uhlemann and D.A. Fidock, Loss of Malarial Susceptibility to Artemisinin in Thailand, Lancet, 379, 1928 (2012); https://doi.org/10.1016/S0140-6736(12)60488-7
A. Sofowora, Medicinal Plants and Traditional Medicine in Africa, John Wiley & Sons: Chichester, UK, edn 1, pp 221-223 (1982).
K. Cimanga, L. Pieters, M. Claeys, D. Berghe and A. Vlietinck, Biological Activities of Cryptolepine, An Alkaloid from Cryptolepis sanguinolenta, Planta Med., 57(S 2), A98 (1991); https://doi.org/10.1055/s-2006-960380
D.J. Newman and G.M. Cragg, Natural Products as Sources of New Drugs over the Last 25 Years, J. Nat. Prod., 70, 461 (2007); https://doi.org/10.1021/np068054v
K.H.J. Lee, Discovery and Development of Natural Product-Derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach, Nat. Prod. Prod., 73, 500 (2010); https://doi.org/10.1021/np900821e
N.J. White, Qinghaosu (Artemisinin): The Price of Success, Science, 320, 330 (2008); https://doi.org/10.1126/science.1155165
J. Achan, A.O. Talisuna, A. Erhart, A. Yeka, J.K. Tibenderana, F.N. Baliraine, P.J. Rosenthal and U. D’Alessandro, Quinine, An Old Anti-Malarial Drug in a Modern World: Role in the Treatment of Malaria, Malar. J., 10, 144 (2011); https://doi.org/10.1186/1475-2875-10-144
A. Kumar, S. Katiyar, A. Agarwal and M.P.S. Chauhan, Perspective in Antimalarial Chemotherapy, Curr. Med. Chem., 10, 1137 (2003); https://doi.org/10.2174/0929867033457494
H. Noedl, Y. Se, K. Schaecher, B.L. Smith, D. Socheat and M.M. Fukuda, Evidence of Artemisinin-Resistant Malaria in Western Cambodia, N. Engl. J. Med., 359, 2619 (2008); https://doi.org/10.1056/NEJMc0805011
Y. Tang, Y. Dong and J.L. Vennerstrom, Synthetic Peroxides as Antimalarials, Med. Res. Rev., 24, 425 (2004); https://doi.org/10.1002/med.10066
A.J. Lin, D.L. Klayman and W.K. Milhous, Antimalarial Activity of New Water-soluble Dihydroartemisinin Derivatives, J. Med. Chem., 30, 2147 (1987) https://doi.org/10.1021/jm00394a037
V.W.-W. Yam, Molecular Design of Transition Metal Alkynyl Complexes as Building Blocks for Luminescent Metal-Based Materials: Structural and Photophysical Aspects, Acc. Chem. Res., 35, 555 (2002); https://doi.org/10.1021/ar0000758
G.H. Posner, C.H. Oh, D. Wang, L. Gerena, W.K. Milhous, S.R. Meshnick and W. Asawamahasadka, Mechanism-Based Design, Synthesis and in vitro Antimalarial Testing of New 4-Methylated Trioxanes Structurally Related to Artemisinin: The Importance of a Carbon-Centered Radical for Antimalarial Activity, J. Med. Chem., 37, 1256 (1994); https://doi.org/10.1021/jm00035a003
C.M. Martínez-Viturro and D. Domínguez, Synthesis of the Anti-tumoural Agent Batracylin and Related Isoindolo[1,2-b]quinazolin-12(10H)-ones, Tetrahedron Lett., 48, 1023 (2007); https://doi.org/10.1016/j.tetlet.2006.11.168
K. Dzierzbicka, P. Trzonkowski, P.L. Sewerynek and A. Myœliwski, Synthesis and Cytotoxic Activity of Conjugates of Muramyl and Normuramyl Dipeptides with Batracylin Derivatives, J. Med. Chem., 46, 978 (2003); https://doi.org/10.1021/jm021067v
S.-T. Yu, T.-M. Chen, S.-Y. Tseng and Y.-H. Chen, Tryptanthrin Inhibits MDR1 and Reverses Doxorubicin Resistance in Breast Cancer Cells, Biochem. Biophys. Res. Commun., 358, 79 (2007); https://doi.org/10.1016/j.bbrc.2007.04.107
J. Scovill, E. Blank, M. Konnick, E. Nenortas and T. Shapiro, Anti-trypanosomal Activities of Tryptanthrins, Antimicrob. Agents Chemother., 46, 882 (2002); https://doi.org/10.1128/AAC.46.3.882-883.2002
A.K. Bhattacharjee, D.J. Skanchy, B.T. Jennings, H. Hudson, J.J. Brendle and K.A. Werbovetz, Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]-quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity using Quantum Chemical, Cyclic Voltammetry and 3D-QSAR Catalyst Procedures, Bioorg. Med. Chem., 10, 1979 (2002); https://doi.org/10.1016/S0968-0896(02)00013-5
H. Danz, S. Stoyanova, O.A.R. Thomet, H.-U. Simon, G. Dannhardt, H. Ulbrich and M. Hamburger, Inhibitory Activity of Tryptanthrin on Prostaglandin and Leukotriene Synthesis, Planta Med., 68, 875 (2002); https://doi.org/10.1055/s-2002-34922
W.R. Bowman, M.R.J. Elsegood, T. Stein and G.W. Weaver, Radical Reactions with 3H-quinazolin-4-ones: Synthesis of Deoxyvasicinone, Mackinazolinone, Luotonin A, Rutaecarpine and Tryptanthrin, Org. Biomol. Chem., 5, 103 (2007); https://doi.org/10.1039/B614075K
A. Kumar, V.D. Tripathi and P. Kumar, b-Cyclodextrin catalyzed Synthesis of Tryptanthrin in Water, Green Chem., 13, 51 (2011); https://doi.org/10.1039/C0GC00523A