Main Article Content

Abstract

The present study demonstrated the antioxidant activity of 2-bromo- 3-hydroxy-2-nitropropylcinnamate versus alcohol induced oxidative damage in albino wistar rats. In this study, 30 % alcohol exposed rats were found to be more prone to peroxidative risk as they are calculated by species of thiobarbituric acid. It was observed that after the rats induction with 30% alcohol, concentration of lipid peroxidation has been obtained expressively (p ≤ 0.001) high in a liver and serum, beside with concomitant substantial (p ≤ 0.001) reduced in enzymatic and non-enzymatic antioxidants levels like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), vitamin E (tocopherol), reduced glutathione (GSH), glutathione- s-transferase (GST), vitamin C (ascorbic acid), β-carotene as well as ceruloplasmin in serum along with liver, only 30% alcohol was treated. If rats obtained 2-bromo-3-hydroxy-2-nitropropylcinnamate at the dose level of 20 mg/kg bw/day, PO, for 30 days, the peroxidative damage has been marginal in serum along with liver, alongside efficiently encouraging the potential of antioxidant in the rats treated by alcohol. This study revealed that in liver the raised peroxidative risk is probably allied with alcohol induction pathology that can be decreased by increasing the antioxidant potential by free radical scavenging activity, therefore promising as artificial antioxidants for 2-bromo-3- hydroxy-2-nitropropylcinnamate.

Keywords

2-Bromo-3-hydroxy-2-nitropropylcinnamate Antioxidant activity Lipid peroxidation

Article Details

How to Cite
Kumar Malik, R., Kumar Singh, D., Kumar, S., & Anuradha, . (2020). Antioxidant Activity of 2-Bromo-3-hydroxy-2- nitropropylcinnamate against Alcohol Induced Oxidative Damage in Rats. Asian Journal of Organic & Medicinal Chemistry, 5(2), 156–160. https://doi.org/10.14233/ajomc.2020.AJOMC-P266

References

  1. E.B. Kurutas, The Importance of Antioxidants which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State, Nutr. J., 15, 71 (2015); https://doi.org/10.1186/s12937-016-0186-5
  2. D.-P. Xu, Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, J.-J. Zhang and H.-B. Li, Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources, Int. J. Mol. Sci., 18, 96 (2017); https://doi.org/10.3390/ijms18010096
  3. H. Sies, Oxidative Stress: Oxidants and Antioxidants, Exp. Physiol., 82, 291 (2012); https://doi.org/10.1113/expphysiol.1997.sp004024
  4. S. Vertuani, A. Angusti and S. Manfredini, The Antioxidants and Pro-Antioxidants Network: An Overview, Curr. Pharm. Des., 10, 1677 (2004); https://doi.org/10.2174/1381612043384655
  5. R.A. Miller and B.E. Britigan, Role of Oxidants in Microbial Pathophy-siology, Clin. Microbiol. Rev., 10, 1 (1997); https://doi.org/10.1128/CMR.10.1.1
  6. J. Chaudière and R. Ferrari-Iliou, Intracellular Antioxidants: From Chemical to Biochemical Mechanisms, Food Chem. Toxicol., 37, 949 (1999); https://doi.org/10.1016/S0278-6915(99)00090-3
  7. H. Sies, Strategies of Antioxidant Defense, Eur. J. Biochem., 215, 2139 (1993); https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
  8. C.E. Cross, B. Halliwell, E.t. Borish, W.A. Pryor, B.N. Ames, R.L. Saul, J.M. McCord and D. Harman, Oxygen Radicals and Human Disease, Annal Int. Med., 107, 526 (1987); https://doi.org/10.7326/0003-4819-107-4-526
  9. J.L. Marx, Oxygen Free Radicals Linked to Many Diseases, Science, 235, 529 (1987); https://doi.org/10.1126/science.3810154
  10. G.L. Plaa and H. Witschi, Chemicals, Drugs and Lipid Peroxidation, Annu. Rev. Pharmacol. Toxicol., 16, 125 (1976); https://doi.org/10.1146/annurev.pa.16.040176.001013
  11. A.L. Cederbaum, Introduction: Role of Lipid Peroxidation and Oxidative Stress in Alcohol Toxicity, Free Radic. Biol. Med., 7, 537 (1989); https://doi.org/10.1016/0891-5849(89)90029-4
  12. R.G. Thurman and J.A. Handler, New Perspectives in Catalase Dependent Ethanol Metabolism, Drug Metab. Rev., 20, 679 (1989); https://doi.org/10.3109/03602538909103570
  13. H. Kleszczynska, D. Bonarska, H. Pruchnik, K. Bielecki, A. Piasecki, J. Luczynski and J. Sarapuk, Antioxidative Activity of New N-Oxides of Tertiary Amines: Membrane Model and Chromogen Studies, Z. Naturforsch. C, 60, 567 (2005); https://doi.org/10.1515/znc-2005-7-809
  14. J. Gabrielska, M. Soczyñska-Kordala and S. Przestalski, Antioxidative Effect of Kaempferol and Its Equimolar Mixture with Phenyltin Comp-ounds on UV-Irradiated Liposome Membranes, J. Agric. Food Chem., 53, 76 (2005); https://doi.org/10.1021/jf0401120
  15. J. Gabrielska, M. Soczyñska-Kordala, J. Hladyszowski, R. Zylka, J. Miskiewicz and S. Przestalski, Antioxidative Effect of Quercetin and Its Equimolar Mixtures with Phenyltin Compounds on Liposome Membranes, J. Agric. Food Chem., 54, 7735 (2006); https://doi.org/10.1021/jf060720a
  16. R.F.V. de Souza and W.F. de Giovani, Antioxidant Properties of Complexes of Flavonoids with Metal Ions, Redox Rep., 9, 97 (1967).
  17. N. Yamamoto, J.H. Moon, T. Tsushida, A. Nagao and T. Terao, Inhibitory Effect of Quercetin Metabolites and their Related Derivatives on Copper Ion-Induced Lipid Peroxidation in Human Low-Density Lipoprotein, Arch. Biochem. Biophys., 372, 347 (1999); https://doi.org/10.1006/abbi.1999.1516
  18. W.Y. Boadi, P.A. Iyere and S.E. Adunyah, Effect of Quercetin and Genistein on Copper- and Iron-Induced Lipid Peroxidation in Methyl Linolenate, J. Appl. Toxicol., 23, 363 (2003); https://doi.org/10.1002/jat.933
  19. W.J. Blot, J.Y. Li, P.R. Taylor, W. Guo, S.M. Dawsey and B. Li, The Linxian Trials: Mortality Rates by Vitamin-Mineral Intervention Group, Am. J. Clin. Nutr., 62, 1424S (1995); https://doi.org/10.1093/ajcn/62.6.1424S
  20. M. Moron, J. Depierre and B. Mannervik, Biochim. Biophys. Acta, 582, 67 (1979); https://doi.org/10.1016/0304-4165(79)90289-7
  21. S.T. Omaye, J.D. Turnbull and H.E. Sauberlich, Selected Methods for the Determination of Ascorbic Acid in Animal Cells, Tissues and Fluids, Methods Enzymol., 62, 3 (1979); https://doi.org/10.1016/0076-6879(79)62181-X
  22. H. Baker, O. Frank, B. Angelis and S. Feingold, Plasma Tocopherol in Man at Various Time Intervals after Ingesting Free or Acetylated Tocopherol, Nutr. Rep. Int., 21, 531 (1980).
  23. H.A. Ravin, An Improved Colorimetric Enzymatic Assay of Ceruloplasmin, J. Lab. Clin. Med., 58, 161 (1961).
  24. D.W. Bradley and C.L. Hornbeck, A Clinical Evaluation of an Improved TFA Micromethod for Plasma and Serum Vitamin A, Biochem. Med., 7, 78 (1973); https://doi.org/10.1016/0006-2944(73)90101-4
  25. S. Marklund and G. Marklund, Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase, Eur. J. Biochem., 47, 469 (1974); https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  26. H. Aebi, eds.: S.P. Colowick and N.O. Kaplan, Catalase in vitro, In: Methods in Enzymology, Vol. 5, Academic Press: New York, vol. 5, pp 121-126 (1967).
  27. D.E. Paglia and W.M. Velentine, Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase, J. Lab. Clin. Med., 70, 158 (1967).
  28. I. Carlberg and B. Mennervick, Methods in Enzymology, vol. 113, Academic Press: New York, pp 484-490 (1985).
  29. W.H. Habig, M.J. Pabst and W.B. Jacoby, Glutathione S-transferases. The First Enzymatic Step in Mercapturic Acid Formation, J. Biol. Chem., 249, 7130 (1974).
  30. H. Ohkawa, N. Ohishi and K. Yagi, Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal. Biochem., 95, 351 (1979); https://doi.org/10.1016/0003-2697(79)90738-3
  31. K.A. Youdim and J.A. Joseph, A Possible Emerging Role of Phyto-chemicals in Improving Age-Related Neurological Dysfunctions: A Multiplicity of Effects, Free Radic. Biol. Med., 30, 583 (2001); https://doi.org/10.1016/S0891-5849(00)00510-4
  32. A.P. Bautista, Free Radicals, Chemokines, and Cell Injury in HIV-1 and SIV Infections and Alcoholic Hepatitis, Free Radic. Biol. Med., 31, 1527 (2001); https://doi.org/10.1016/S0891-5849(01)00745-6
  33. A.A. Nanji, K. Jokelainen, G.L. Tipoe, A. Rahemtulla, P. Thomas, A.J. Dannenberg and A.E. Fisher, Curcumin Prevents Alcohol-Induced Liver Disease in Rats by Inhibiting the Expression of NF-kB-Dependent Genes, Am. J. Physiol. Gastrointest. Liver Physiol., 284, G321 (2003); https://doi.org/10.1152/ajpgi.00230.2002
  34. H. Kono, G.E. Arteel, I. Rusyn, H. Sies and R.G. Thurman, Ebselen Prevents Early Alcohol-Induced Liver Injury in Rats, Free Radic. Biol. Med., 30, 403 (2001); https://doi.org/10.1016/S0891-5849(00)00490-1
  35. R.A. Floyd, Role of Oxygen Free Radicals in Carcinogenesis and Brain Ischemia, FASEB J., 4, 2587 (1990); https://doi.org/10.1096/fasebj.4.9.2189775
  36. R.P. Singh, B. Padmavathi and A.R. Rao, Modulatory Influence of Adhatoda Vesica (Justicia adhatoda) Leaf Extract on the Enzymes of Xenobiotic Metabolism, Antioxidant Status and Lipid Peroxidation in Mice, Mol. Cell. Biochem., 213, 99 (2000); https://doi.org/10.1023/A:1007182913931
  37. A.T.A. Nandhini, S.D. Balakrishnan and C.V. Anuradha, Response of Liver Antioxidant System to Taurine in Rats Fed High Fructose Diet, Indian J. Exp. Biol., 40, 1016 (2002).
  38. R. Stocker and B. Frei, ed.: H. Sies, Oxidative Stress: Oxidants and Antioxidants, Academic Press: London, pp. 213-243 (1991).