Main Article Content
Abstract
Efferent, new and simple synthesis for antidepressant drug moclobemide has been developed via two liner steps. Initially, morpholine was treated with 60% aqueous solution of 2-bromoethylamine hydrochloride under solvent and catalyst free condition leads to a key intermediate N-(2-aminoethyl)morpholine, which subsequently treated with p-chlorobenzoic acid in presence of commercially available solid catalysts, afforded moclobemide with good yield. Mild reaction conditions, short reaction time, easy workup, cost-effective, environment friendliness and high yields are attractive advantages of the present method, so our synthetic strategy was applicable to large scale manufacturing of moclobemide every conveniently.
Keywords
Article Details
References
- American Medical Association, Essential Guide to Depression, Pocket Books: New York (1998).
- B. Brigitta, Pathophysiology of Depression and Mechanisms of Treat-ment, Dialogues Clin. Neurosci., 4, 7 (2002).
- D.A. Ciraulo and R.I. Shader, Pharmacotherapy of Depression, Humana Press: New York (2011).
- U. Bonnet, Moclobemide: Therapeutic Use and Clinical Studies, CNS Drug Rev., 9, 97 (2003); https://doi.org/10.1111/j.1527-3458.2003.tb00245.x
- A.J. Scheen, Paroxetine, Rev. Med. Liege, 49, 291 (1994).
- N.P. Nair, S.K. Ahmed and N.M. Kin, Biochemistry and Pharmacology of Reversible Inhibitors of MAO-A Agents: Focus on Moclobemide, J. Psychiatry Neurosci., 18, 214 (1993).
- M. Versiani, A.E. Nardi, F.D. Mundim, S. Pinto, E. Saboya and R. Kovacs, The Long-Term Treatment of Social Phobia with Moclobemide, Int. Clin. Psychopharmacol., 11(Suppl. 3), 83 (1996); https://doi.org/10.1097/00004850-199606003-00014
- S. Rossi, Australian Medicines Handbook, The Australian Medicines Handbook Unit Trust: Adelaide, Australia (2013).
- Joint Formulary Committee, British National Formulary, Pharmaceutical Press: London, UK, edn 65 (2013).
- B. Fulton and P. Benfield, Moclobemide, Drugs, 52, 450 (1996); https://doi.org/10.2165/00003495-199652030-00013
- J.P. Mason and S. Malkiel, Ethers and Amines from b-4-Morpholino-ethyl Chloride, J. Am. Chem. Soc., 62, 1448 (1940); https://doi.org/10.1021/ja01863a033
- M.E. Hultquist and E.H. Northey, Reaction of bis-b-Chloroethyl Ether with Ethylenediamine, J. Am. Chem. Soc., 62, 447 (1940); https://doi.org/10.1021/ja01859a505
- J. Liu, Y. Zhang, S. Yang and J. Shen, Farming Zhuanil Shenqing, CN Patent 104151268 (2014).
- D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais L. Biktimirov, A.I. Isamilov and F.G. Kamaev, Khim. Prirodn. Soed., 5, 707 (1989).
- B. Zupancic, New Process for the Synthesis of 1-(2-((2,4-Dimethyl-phenyl)thio)phenyl)piperazine, Eur. Patent EP 3495347A1 (2019).
- D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais, L. Biktimirov, A.I. Ismailov and F.G. Kamaev, Synthesis, Structure, and Action of Some Gossypol Derivatives on the Peroxidation of the Lipids of Biosubstrates, Chem. Nat. Compd., 25, 603 (1989); https://doi.org/10.1007/BF00598085
- J.M. Contreras, Y.M. Rival, S. Chayer, J.J. Bourguignon and C.G. Wermuth, Aminopyridazines as Acetylcholinesterase Inhibitors, J. Med. Chem., 42, 730 (1999); https://doi.org/10.1021/jm981101z
- S. Ghafary, S. Ranjbar, B. Larijani, M. Amini, M. Biglar, M. Bakhshaei, M. Mahdavi, M. Khoshneviszadeh, A. Sakhteman and M. Khoshneviszadeh, Novel Morpholine Containing Cinnamoyl Amides as Potent Tyrosinase Inhibitors, Int. J. Biol. Macromol., 135, 978 (2019); https://doi.org/10.1016/j.ijbiomac.2019.05.201
- W. Burkarad and P.-C. Wyess, Morpholino Containing Benzamides, US Patent 4210754 (1980).
- C.L. Allen, A.R. Chhatwal and J.M. Williams, Direct Amide Formation from Unactivated Carboxylic Acids and Amines, Chem. Commun., 48, 666 (2012); https://doi.org/10.1039/C1CC15210F
- C.L. Allen, S. Davulcu and J.M. Williams, Catalytic Acylation of Amines with Aldehydes or Aldoximes, Org. Lett., 12, 5096 (2010); https://doi.org/10.1021/ol101978h
- S. Abbaraju and J.C.-G. Zhao, Asymmetric Aldol Reaction of 3-Acetyl-2H-chromen-2-ones and Isatins Catalyzed by a Bifunctional Quinidine Urea Catalyst, Adv. Synth. Catal., 356, 2 (2014); https://doi.org/10.1002/adsc.201301177
- X. Bantreil, N. Kanfar, N. Gehin, E. Golliard, P. Ohlmann, J. Martinez and F. Lamaty, Iron-Catalyzed Benzamide Formation. Application to the Synthesis of Moclobemide, Tetrahedron, 70, 5093 (2014); https://doi.org/10.1016/j.tet.2014.06.001
- C. Lescot, D.U. Nielsen, I.S. Makarov, A.T. Lindhardt, K. Daasbjerg and T. Skrydstrup, Efficient Fluoride-Catalyzed Conversion of CO2 to CO at Room Temperature, J. Am. Chem. Soc., 136, 6142 (2014); https://doi.org/10.1021/ja502911e
- T.T. Dang, Y. Zhu, S.C. Ghosh, A. Chen, C.L. Chai and A.M. Seayad, Atmospheric Pressure Aminocarbonylation of Aryl Iodides using Palladium Nanoparticles Supported on MOF-5, Chem. Commun., 48, 1805 (2012); https://doi.org/10.1039/c2cc16808a
- T.T. Dang, Y. Zhu, J.S. Ngiam, S.C. Ghosh, A. Chen and A.M. Seayad, Palladium Nanoparticles Supported on ZIF-8 as an Efficient Heterogeneous Catalyst for Aminocarbonylation, ACS Catal., 3, 1406 (2013); https://doi.org/10.1021/cs400232b
- F. Cortese, b-Bromoethylamine Hydrobromide, Org. Synth., 2, 91 (1943); https://doi.org/10.15227/orgsyn.018.0013
- P. Tang, Boric Acid Catalyzed Amide Formation from Carboxylic Acids and Amines:N-Benzyl-4-phenylbutyramide, Org. Synth., 81, 262 (2005); https://doi.org/10.1002/0471264229.os081.28
- G. Arce, G. Carrau, A. Bellomo and D. Gonzalez, Greener Synthesis of an Amide by Direct Reaction of an Acid and Amine under Catalytic Conditions, World J. Chem. Educ., 3, 27 (2015); https://doi.org/10.12691/wjce-3-1-4
- R.M. Lanigan and T.D. Sheppard, Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions, Eur. J. Org. Chem., 2013, 7453 (2013); https://doi.org/10.1002/ejoc.201300573
References
American Medical Association, Essential Guide to Depression, Pocket Books: New York (1998).
B. Brigitta, Pathophysiology of Depression and Mechanisms of Treat-ment, Dialogues Clin. Neurosci., 4, 7 (2002).
D.A. Ciraulo and R.I. Shader, Pharmacotherapy of Depression, Humana Press: New York (2011).
U. Bonnet, Moclobemide: Therapeutic Use and Clinical Studies, CNS Drug Rev., 9, 97 (2003); https://doi.org/10.1111/j.1527-3458.2003.tb00245.x
A.J. Scheen, Paroxetine, Rev. Med. Liege, 49, 291 (1994).
N.P. Nair, S.K. Ahmed and N.M. Kin, Biochemistry and Pharmacology of Reversible Inhibitors of MAO-A Agents: Focus on Moclobemide, J. Psychiatry Neurosci., 18, 214 (1993).
M. Versiani, A.E. Nardi, F.D. Mundim, S. Pinto, E. Saboya and R. Kovacs, The Long-Term Treatment of Social Phobia with Moclobemide, Int. Clin. Psychopharmacol., 11(Suppl. 3), 83 (1996); https://doi.org/10.1097/00004850-199606003-00014
S. Rossi, Australian Medicines Handbook, The Australian Medicines Handbook Unit Trust: Adelaide, Australia (2013).
Joint Formulary Committee, British National Formulary, Pharmaceutical Press: London, UK, edn 65 (2013).
B. Fulton and P. Benfield, Moclobemide, Drugs, 52, 450 (1996); https://doi.org/10.2165/00003495-199652030-00013
J.P. Mason and S. Malkiel, Ethers and Amines from b-4-Morpholino-ethyl Chloride, J. Am. Chem. Soc., 62, 1448 (1940); https://doi.org/10.1021/ja01863a033
M.E. Hultquist and E.H. Northey, Reaction of bis-b-Chloroethyl Ether with Ethylenediamine, J. Am. Chem. Soc., 62, 447 (1940); https://doi.org/10.1021/ja01859a505
J. Liu, Y. Zhang, S. Yang and J. Shen, Farming Zhuanil Shenqing, CN Patent 104151268 (2014).
D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais L. Biktimirov, A.I. Isamilov and F.G. Kamaev, Khim. Prirodn. Soed., 5, 707 (1989).
B. Zupancic, New Process for the Synthesis of 1-(2-((2,4-Dimethyl-phenyl)thio)phenyl)piperazine, Eur. Patent EP 3495347A1 (2019).
D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais, L. Biktimirov, A.I. Ismailov and F.G. Kamaev, Synthesis, Structure, and Action of Some Gossypol Derivatives on the Peroxidation of the Lipids of Biosubstrates, Chem. Nat. Compd., 25, 603 (1989); https://doi.org/10.1007/BF00598085
J.M. Contreras, Y.M. Rival, S. Chayer, J.J. Bourguignon and C.G. Wermuth, Aminopyridazines as Acetylcholinesterase Inhibitors, J. Med. Chem., 42, 730 (1999); https://doi.org/10.1021/jm981101z
S. Ghafary, S. Ranjbar, B. Larijani, M. Amini, M. Biglar, M. Bakhshaei, M. Mahdavi, M. Khoshneviszadeh, A. Sakhteman and M. Khoshneviszadeh, Novel Morpholine Containing Cinnamoyl Amides as Potent Tyrosinase Inhibitors, Int. J. Biol. Macromol., 135, 978 (2019); https://doi.org/10.1016/j.ijbiomac.2019.05.201
W. Burkarad and P.-C. Wyess, Morpholino Containing Benzamides, US Patent 4210754 (1980).
C.L. Allen, A.R. Chhatwal and J.M. Williams, Direct Amide Formation from Unactivated Carboxylic Acids and Amines, Chem. Commun., 48, 666 (2012); https://doi.org/10.1039/C1CC15210F
C.L. Allen, S. Davulcu and J.M. Williams, Catalytic Acylation of Amines with Aldehydes or Aldoximes, Org. Lett., 12, 5096 (2010); https://doi.org/10.1021/ol101978h
S. Abbaraju and J.C.-G. Zhao, Asymmetric Aldol Reaction of 3-Acetyl-2H-chromen-2-ones and Isatins Catalyzed by a Bifunctional Quinidine Urea Catalyst, Adv. Synth. Catal., 356, 2 (2014); https://doi.org/10.1002/adsc.201301177
X. Bantreil, N. Kanfar, N. Gehin, E. Golliard, P. Ohlmann, J. Martinez and F. Lamaty, Iron-Catalyzed Benzamide Formation. Application to the Synthesis of Moclobemide, Tetrahedron, 70, 5093 (2014); https://doi.org/10.1016/j.tet.2014.06.001
C. Lescot, D.U. Nielsen, I.S. Makarov, A.T. Lindhardt, K. Daasbjerg and T. Skrydstrup, Efficient Fluoride-Catalyzed Conversion of CO2 to CO at Room Temperature, J. Am. Chem. Soc., 136, 6142 (2014); https://doi.org/10.1021/ja502911e
T.T. Dang, Y. Zhu, S.C. Ghosh, A. Chen, C.L. Chai and A.M. Seayad, Atmospheric Pressure Aminocarbonylation of Aryl Iodides using Palladium Nanoparticles Supported on MOF-5, Chem. Commun., 48, 1805 (2012); https://doi.org/10.1039/c2cc16808a
T.T. Dang, Y. Zhu, J.S. Ngiam, S.C. Ghosh, A. Chen and A.M. Seayad, Palladium Nanoparticles Supported on ZIF-8 as an Efficient Heterogeneous Catalyst for Aminocarbonylation, ACS Catal., 3, 1406 (2013); https://doi.org/10.1021/cs400232b
F. Cortese, b-Bromoethylamine Hydrobromide, Org. Synth., 2, 91 (1943); https://doi.org/10.15227/orgsyn.018.0013
P. Tang, Boric Acid Catalyzed Amide Formation from Carboxylic Acids and Amines:N-Benzyl-4-phenylbutyramide, Org. Synth., 81, 262 (2005); https://doi.org/10.1002/0471264229.os081.28
G. Arce, G. Carrau, A. Bellomo and D. Gonzalez, Greener Synthesis of an Amide by Direct Reaction of an Acid and Amine under Catalytic Conditions, World J. Chem. Educ., 3, 27 (2015); https://doi.org/10.12691/wjce-3-1-4
R.M. Lanigan and T.D. Sheppard, Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions, Eur. J. Org. Chem., 2013, 7453 (2013); https://doi.org/10.1002/ejoc.201300573