Main Article Content

Abstract

Efferent, new and simple synthesis for antidepressant drug moclobemide has been developed via two liner steps. Initially, morpholine was treated with 60% aqueous solution of 2-bromoethylamine hydrochloride under solvent and catalyst free condition leads to a key intermediate N-(2-aminoethyl)morpholine, which subsequently treated with p-chlorobenzoic acid in presence of commercially available solid catalysts, afforded moclobemide with good yield. Mild reaction conditions, short reaction time, easy workup, cost-effective, environment friendliness and high yields are attractive advantages of the present method, so our synthetic strategy was applicable to large scale manufacturing of moclobemide every conveniently.

Keywords

N-(2-Aminoethyl)morpholine Moclobemide N-Alkylation Direct amidation

Article Details

How to Cite
M. Potdar, S., & T. Waghmode, K. (2020). An Efficient Straightforward Synthesis of Antidepressant Drug Moclobemide. Asian Journal of Organic & Medicinal Chemistry, 5(2), 174–178. https://doi.org/10.14233/ajomc.2020.AJOMC-P268

References

  1. American Medical Association, Essential Guide to Depression, Pocket Books: New York (1998).
  2. B. Brigitta, Pathophysiology of Depression and Mechanisms of Treat-ment, Dialogues Clin. Neurosci., 4, 7 (2002).
  3. D.A. Ciraulo and R.I. Shader, Pharmacotherapy of Depression, Humana Press: New York (2011).
  4. U. Bonnet, Moclobemide: Therapeutic Use and Clinical Studies, CNS Drug Rev., 9, 97 (2003); https://doi.org/10.1111/j.1527-3458.2003.tb00245.x
  5. A.J. Scheen, Paroxetine, Rev. Med. Liege, 49, 291 (1994).
  6. N.P. Nair, S.K. Ahmed and N.M. Kin, Biochemistry and Pharmacology of Reversible Inhibitors of MAO-A Agents: Focus on Moclobemide, J. Psychiatry Neurosci., 18, 214 (1993).
  7. M. Versiani, A.E. Nardi, F.D. Mundim, S. Pinto, E. Saboya and R. Kovacs, The Long-Term Treatment of Social Phobia with Moclobemide, Int. Clin. Psychopharmacol., 11(Suppl. 3), 83 (1996); https://doi.org/10.1097/00004850-199606003-00014
  8. S. Rossi, Australian Medicines Handbook, The Australian Medicines Handbook Unit Trust: Adelaide, Australia (2013).
  9. Joint Formulary Committee, British National Formulary, Pharmaceutical Press: London, UK, edn 65 (2013).
  10. B. Fulton and P. Benfield, Moclobemide, Drugs, 52, 450 (1996); https://doi.org/10.2165/00003495-199652030-00013
  11. J.P. Mason and S. Malkiel, Ethers and Amines from b-4-Morpholino-ethyl Chloride, J. Am. Chem. Soc., 62, 1448 (1940); https://doi.org/10.1021/ja01863a033
  12. M.E. Hultquist and E.H. Northey, Reaction of bis-b-Chloroethyl Ether with Ethylenediamine, J. Am. Chem. Soc., 62, 447 (1940); https://doi.org/10.1021/ja01859a505
  13. J. Liu, Y. Zhang, S. Yang and J. Shen, Farming Zhuanil Shenqing, CN Patent 104151268 (2014).
  14. D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais L. Biktimirov, A.I. Isamilov and F.G. Kamaev, Khim. Prirodn. Soed., 5, 707 (1989).
  15. B. Zupancic, New Process for the Synthesis of 1-(2-((2,4-Dimethyl-phenyl)thio)phenyl)piperazine, Eur. Patent EP 3495347A1 (2019).
  16. D.N. Dalimov, E.N. Mukhamedzhanova, V.B. Shneivais, L. Biktimirov, A.I. Ismailov and F.G. Kamaev, Synthesis, Structure, and Action of Some Gossypol Derivatives on the Peroxidation of the Lipids of Biosubstrates, Chem. Nat. Compd., 25, 603 (1989); https://doi.org/10.1007/BF00598085
  17. J.M. Contreras, Y.M. Rival, S. Chayer, J.J. Bourguignon and C.G. Wermuth, Aminopyridazines as Acetylcholinesterase Inhibitors, J. Med. Chem., 42, 730 (1999); https://doi.org/10.1021/jm981101z
  18. S. Ghafary, S. Ranjbar, B. Larijani, M. Amini, M. Biglar, M. Bakhshaei, M. Mahdavi, M. Khoshneviszadeh, A. Sakhteman and M. Khoshneviszadeh, Novel Morpholine Containing Cinnamoyl Amides as Potent Tyrosinase Inhibitors, Int. J. Biol. Macromol., 135, 978 (2019); https://doi.org/10.1016/j.ijbiomac.2019.05.201
  19. W. Burkarad and P.-C. Wyess, Morpholino Containing Benzamides, US Patent 4210754 (1980).
  20. C.L. Allen, A.R. Chhatwal and J.M. Williams, Direct Amide Formation from Unactivated Carboxylic Acids and Amines, Chem. Commun., 48, 666 (2012); https://doi.org/10.1039/C1CC15210F
  21. C.L. Allen, S. Davulcu and J.M. Williams, Catalytic Acylation of Amines with Aldehydes or Aldoximes, Org. Lett., 12, 5096 (2010); https://doi.org/10.1021/ol101978h
  22. S. Abbaraju and J.C.-G. Zhao, Asymmetric Aldol Reaction of 3-Acetyl-2H-chromen-2-ones and Isatins Catalyzed by a Bifunctional Quinidine Urea Catalyst, Adv. Synth. Catal., 356, 2 (2014); https://doi.org/10.1002/adsc.201301177
  23. X. Bantreil, N. Kanfar, N. Gehin, E. Golliard, P. Ohlmann, J. Martinez and F. Lamaty, Iron-Catalyzed Benzamide Formation. Application to the Synthesis of Moclobemide, Tetrahedron, 70, 5093 (2014); https://doi.org/10.1016/j.tet.2014.06.001
  24. C. Lescot, D.U. Nielsen, I.S. Makarov, A.T. Lindhardt, K. Daasbjerg and T. Skrydstrup, Efficient Fluoride-Catalyzed Conversion of CO2 to CO at Room Temperature, J. Am. Chem. Soc., 136, 6142 (2014); https://doi.org/10.1021/ja502911e
  25. T.T. Dang, Y. Zhu, S.C. Ghosh, A. Chen, C.L. Chai and A.M. Seayad, Atmospheric Pressure Aminocarbonylation of Aryl Iodides using Palladium Nanoparticles Supported on MOF-5, Chem. Commun., 48, 1805 (2012); https://doi.org/10.1039/c2cc16808a
  26. T.T. Dang, Y. Zhu, J.S. Ngiam, S.C. Ghosh, A. Chen and A.M. Seayad, Palladium Nanoparticles Supported on ZIF-8 as an Efficient Heterogeneous Catalyst for Aminocarbonylation, ACS Catal., 3, 1406 (2013); https://doi.org/10.1021/cs400232b
  27. F. Cortese, b-Bromoethylamine Hydrobromide, Org. Synth., 2, 91 (1943); https://doi.org/10.15227/orgsyn.018.0013
  28. P. Tang, Boric Acid Catalyzed Amide Formation from Carboxylic Acids and Amines:N-Benzyl-4-phenylbutyramide, Org. Synth., 81, 262 (2005); https://doi.org/10.1002/0471264229.os081.28
  29. G. Arce, G. Carrau, A. Bellomo and D. Gonzalez, Greener Synthesis of an Amide by Direct Reaction of an Acid and Amine under Catalytic Conditions, World J. Chem. Educ., 3, 27 (2015); https://doi.org/10.12691/wjce-3-1-4
  30. R.M. Lanigan and T.D. Sheppard, Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions, Eur. J. Org. Chem., 2013, 7453 (2013); https://doi.org/10.1002/ejoc.201300573