Main Article Content

Abstract

With the aim to develop an efficient strategy to synthesize pyrimidine derivatives bearing diversely substituted amines involves four step linear protocols started with Biginelli multi-component reaction leading to dihydropyrimidines which passing throug multistep sequantial process containing oxidation, chlorination and catalytically free transformation of pyrimidin-2(1H)-one to 2-(N-arylamino)pyrimidines, were evaluated for cytotoxicity study against human cancer lines HCT-116, Hep-G2 and QG-56. Compound 4j exhibit significant anticancer activity showed against: human hepato carcinoma (Hep-G2) and human colon carcinoma (HCT-116) serve as a excellent lead molecule for the generation of various promising targets.

Keywords

Biginelli Multi-component reaction Dihydropyrimidine Pyrimidin-2(1H)-one 2-(N-Arylamino) pyrimidines

Article Details

How to Cite
P. Chandrani, J., & J. Ganatra, K. (2020). An Efficient And Catalytically Free Chemical Transformation of Pyrimidin-2(1H)-one to 2-(N-Arylamino)pyrimidines and their in vitro Cytotoxicity Evaluation. Asian Journal of Organic & Medicinal Chemistry, 5(2), 133–137. https://doi.org/10.14233/ajomc.2020.AJOMC-P260

References

  1. I.M. Lagoja, Pyrimidine as Constituent of Natural Biologically Active Compounds, Chem. Biodivers., 2, 1 (2005); https://doi.org/10.1002/cbdv.200490173
  2. D.H. Drewry, E. Brian, K.B. Goodman, V.S. Darren Green, D.K. Jung, D. Lee, R.A. Stavenger and S.N. Wad, Indazolo-tetrahydropyrimidine-carboxamide Derivative Kinase Inhibitors, WO2004/112719 (2004).
  3. J.M. Nuss, S.D. Harrison, D.B. Ring, R.S. Boyce, S.P. Brown, D.A. Goff, K.W. Johnson, K.B. Pfister, S. Ramurthy and P.A. Renhowe, Inhibitors of Glycogen Synthase Kinase 3, Google Patents: 2006.
  4. I. El-Deeb, J. Ryu and S. Lee, Synthesis of New N-Arylpyrimidin-2-amine Derivatives Using a Palladium Catalyst, Molecules, 13, 818 (2008); https://doi.org/10.3390/molecules13040818
  5. M. Watanabe, H. Koike, T. Ishiba, T. Okada, S. Seo and K. Hirai, Synthesis and Biological Activity of Methanesulfonamide Pyrimidine- and N-Methanesulfonyl Pyrrole-Substituted 3,5-Dihydroxy-6-heptenoates, A Novel Series of HMG-CoA Reductase Inhibitors, Bioorg. Med. Chem., 5, 437 (1997); https://doi.org/10.1016/S0968-0896(96)00248-9
  6. V. Niddam-Hildesheim and K. Chen, A Process for the Preparation of Rosuvastatin Involving a TEMPO-Mediated Oxidation Step, PCT Pat. Appl. WO 200617357 (2006).
  7. R. Capdeville, E. Buchdunger, J. Zimmermann and A. Matter, Glivec (STI571, Imatinib), A Rationally Developed, Targeted Anticancer Drug, Nat. Rev. Drug Discov., 1, 493 (2002); https://doi.org/10.1038/nrd839
  8. E.J. Breaux and K.E. Zwikelmaier, An Improved General Synthesis of 4-Aryl-5-pyrimidinecarboxylates, J. Heterocycl. Chem., 18, 183 (1981); https://doi.org/10.1002/jhet.5570180133
  9. D. Obrecht, C. Abrecht, A. Grieder and J.M. Villalgordo, A Novel and Efficient Approach for the Combinatorial Synthesis of Structurally Diverse Pyrimidines on Solid Support, Helv. Chim. Acta, 80, 65 (1997); https://doi.org/10.1002/hlca.19970800106
  10. V. Eynde, J. Jacques, N. Labuche, Y. Van Haverbeke and L. Tietze, Polymer-Assisted Synthesis of Ethyl 2-amino-4,6-diarylpyrimidine-5-carboxylates, ARKIVOC, 15, 22 (2003); https://doi.org/10.3998/ark.5550190.0004.f04
  11. C.O. Kappe, Biologically Active Dihydropyrimidones of the Biginelli-Type-A Literature Survey, Eur. J. Med. Chem., 35, 1043 (2000); https://doi.org/10.1016/S0223-5234(00)01189-2
  12. C.O. Kappe, Microwave Dielectric Heating in Synthetic Organic Chemistry, Chem. Soc. Rev., 37, 1127 (2008); https://doi.org/10.1039/b803001b
  13. A. Stadler and C.O. Kappe, Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation, J. Comb. Chem., 3, 624 (2001); https://doi.org/10.1021/cc010044j
  14. G. Sabitha, G.S. Kumar Reddy, C.S. Reddy and J.S. Yadav, One-Pot Synthesis of Dihydropyrimidinones Using Iodotrimethylsilane. Facile and New Improved Protocol for the Biginelli Reaction at Room Temperature, Synlett, 0858 (2003); https://doi.org/10.1055/s-2003-38734
  15. J.J.V. Eynde, N. Audiart, V. Canonne, S. Michel, Y. Van Haverbeke and C.O. Kappe, Synthesis and Aromatization of Dihydropyrimidines Structurally Related to Calcium Channel Modulators of the Nifedipine-Type, Heterocycles, 10, 1967 (1997).
  16. M.C. Bagley and M.C. Lubinu, Microwave-Assisted Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines using Manganese Dioxide, Synthesis, 1283 (2006); https://doi.org/10.1055/s-2006-926407
  17. D. Font, M. Heras and J.M. Villalgordo, Solution- and Solid-Phase Parallel Synthesis of 4-Alkoxy-Substituted Pyrimidines with High Molecular Diversity, J. Comb. Chem., 5, 311 (2003); https://doi.org/10.1021/cc020019t
  18. E. Petricci, C. Mugnaini, M. Radi, A. Togninelli, C. Bernardini, F. Manetti, M.C. Parlato, M.L. Renzulli, M. Alongi, C. Falciani, F. Corelli and M. Botta, Towards New Methodologies for the Synthesis of Biologically Interesting 6-Substituted Pyrimidines and 4(3H)-Pyrimidinones, ARKIVOC, 7, 452 (2006); https://doi.org/10.3998/ark.5550190.0007.732
  19. M. Muralisankar, J. Haribabu, N.S. Bhuvanesh, R. Karvembu and A. Sreekanth, Synthesis, X-ray Crystal Structure, DNA/Protein Binding, DNA Cleavage and Cytotoxicity Studies of N(4) Substituted Thiosemi-carbazone Based Copper(II)/Nickel(II) Complexes, Inorg. Chim. Acta, 449, 82 (2016); https://doi.org/10.1016/j.ica.2016.04.043
  20. K. Jeyalakshmi, Y. Arun, N.S.P. Bhuvanesh, P.T. Perumal, A. Sreekanth and R. Karvembu, DNA/Protein Binding, DNA Cleavage, Cytotoxicity, Superoxide Radical Scavenging and Molecular Docking Studies of Copper(II) Complexes Containing N-Benzyl-N¢-aryl-N¢¢-benzoyl-guanidine Ligands, Inorg. Chem. Front., 2, 780 (2015); https://doi.org/10.1039/C4QI00234B