Main Article Content
Abstract
In the present study, a novel ligand 2,6-bis(1,3-thiazol-2-yl)-4-(3,4,5-trimethoxyphenyl)pyridine and its Cu(II) and Ni(II) complexes were synthesized. All the synthesized compounds have been characterized by 1H & 13C NMR, mass, UV, FT-IR and ESR spectra. The antioxidant activity of the ligand and its Cu(II) and Ni(II) complexes were evaluated by the percentage of inhibition of 1,1-diphenyl-2-picryl hydrazyl (DPPH) and compounds found to be potent antioxidants. Also, synthesized compounds showed a mild antimicrobial activity in comparison with standard drugs. Copper(II) complexes showed a good antimicrobial activity than the parent ligand and nickel(II) complex. Interestingly, ligand and its metal complexes exhibit non-toxicity as they did not cause any effect to human erythrocyte.
Keywords
Article Details
References
- A. Ayati, S. Emami, A. Asadipour, A. Shafiee and A. Foroumadi, Recent Applications of 1,3-thiazole Core Structure in the Identification of New Lead Compounds and Drug Discovery, Eur. J. Med. Chem., 97, 699 (2015); https://doi.org/10.1016/j.ejmech.2015.04.015
- S. Nayak and S.L. Gaonkar, A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives, Mini-Rev. Med. Chem., 19, 215 (2019); https://doi.org/10.2174/1389557518666180816112151
- R.N. Sharma, F.P. Xavier, K.K. Vasu, S.C. Chaturvedi and S.S. Pancholi, Synthesis of 4-Benzyl-1,3-thiazole Derivatives as Potential Anti-inflammatory Agents: An Analogue Based Drug Design Approach, J. Enzyme Inhib. Med. Chem., 24, 890 (2009); https://doi.org/10.1080/14756360802519558
- C.B. Mishra, S. Kumari and M. Tiwari, Eur. J. Med. Chem., 92, 1 (2015); https://doi.org/10.1016/j.ejmech.2014.12.031
- S. Bondock, T. Naser and Y.A. Ammar, Synthesis of Some New 2-(3-Pyridyl)-4,5-Disubstituted Thiazoles as Potent Antimicrobial Agents, Eur. J. Med. Chem., 62, 270 (2013); https://doi.org/10.1016/j.ejmech.2012.12.050
- M.T. Chhabria, S. Patel, P. Modi and P.S. Brahmkshatriya, Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of Its Derivatives, Curr. Top. Med. Chem., 16, 2841 (2016); https://doi.org/10.2174/1568026616666160506130731
- G. Chelucci and R.P. Thummel, Chiral 2,2¢-Bipyridines, 1,10-Phenan-throlines and 2,2¢:6¢,2¢¢-Terpyridines: Syntheses and Applications in Asymmetric Homogeneous Catalysis, Chem. Rev., 102, 3129 (2002); https://doi.org/10.1021/cr0101914
- J.G. Cordaro, J.K. McCusker and R.G. Bergman, Synthesis of Mono-Substituted 2,2¢-Bipyridines, Chem. Commun., 1496 (2002); https://doi.org/10.1039/B203595B
- D. Rocco, C.E. Housecroft and E.C. Constable, Synthesis of Terpyridines: Simple Reactions-What Could Possibly Go Wrong? Molecules, 24, 1799 (2019); https://doi.org/10.3390/molecules24091799
- S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata and Y.H. Lee, Spin-Crossover in Cobalt(II) Compounds Containing Terpyridine and its Derivatives, Coord. Chem. Rev., 255, 1981 (2011); https://doi.org/10.1016/j.ccr.2011.05.016
- I. Sasaki, J.-C. Daran and G. Commenges, The Simple Production of Nonsymmetric Quaterpyridines through Kröhnke Pyridine Synthesis, Beilstein J. Org. Chem., 11, 1781 (2015); https://doi.org/10.3762/bjoc.11.193
- A.T. Baker, P. Singh and V. Vignevich, Iron(II) and Nickel(II) Complexes of 2,6-Di(thiazol-2-yl)pyridine and Related Ligands, Aust. J. Chem., 44, 1041 (1991); https://doi.org/10.1071/CH9911041
- G.-Y. Li, K.-J. Du, J.-Q. Wang, J.-W. Liang, J.-F. Kou, X.-J. Hou, L.-N. Ji and H. Chao, Synthesis, Crystal Structure, DNA Interaction and Anti-cancer Activity of Tridentate Copper(II) Complexes, J. Inorg. Biochem., 119, 43 (2013); https://doi.org/10.1016/j.jinorgbio.2012.09.019
- J.D. Nobbs, A.K. Tomov, R. Cariou, V.C. Gibson, A.J.P. White and G.J.P. Britovsek, Thio-Pybox and Thio-Phebox Complexes of Chromium, Iron, Cobalt and Nickel and their Application in Ethylene and Butadienepolymerisation Catalysis, Dalton Trans., 41, 5949 (2012); https://doi.org/10.1039/c2dt30324h
- L. Li, K. Du, Y. Wang, H. Jia, X. Hou, H. Chao and L. Ji, Self-Activating Nuclease and Anticancer Activities of Copper(II) Complexes with Aryl-Modified 2,6-Di(thiazol-2-yl)pyridine, Dalton Trans., 42, 11576 (2013); https://doi.org/10.1039/c3dt50395j
- K. Czerwiñska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shul’pina, N.S. Ikonnikov and G.B. Shul’pin, Copper(II) Complexes of Functionalized 2,2¢:6¢,2¢¢-Terpyridines and 2,6-Di(thiazol-2-yl)pyridine: Structure, Spectroscopy, Cytotoxicity and Catalytic Activity, Dalton Trans., 46, 9591 (2017); https://doi.org/10.1039/C7DT01244F
- A. Maron, S. Kula, A. SzlapaKula, A. Switlicka, B. Machura, S. Krompiec, J.G. Malecki, R. Kruszynski, A. Chrobok, E. Schab-Balcerzak, S. Kotowicz, M. Siwy, K. Smolarek, S. Maækowski, H. Janeczek and M. Libera, 2,2¢:6¢,2¢¢-Terpyridine Analogues: Structural, Electrochemical and Photophysical Properties of 2,6-Di(thiazol-2-yl)-pyridine Derivatives, Eur. J. Org. Chem., 2730 (2017); https://doi.org/10.1002/ejoc.201700141
- F. Fache, E. Schulz, M.L. Tommasino and M. Lemaire, Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis, Chem. Rev., 100, 2159 (2000); https://doi.org/10.1021/cr9902897
- V.M. Manikandamathavan and B.U. Nair, DNA Binding and Cytotoxicity of Copper(II) Imidazole Terpyridine Complexes: Role of Oxyanion, Hydrogen Bonding and p-p interaction, Eur. J. Med. Chem., 68, 244 (2013); https://doi.org/10.1016/j.ejmech.2013.07.051
- T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, HPLC Method for Evaluation of the Free Radical-scavenging Activity of Foods by using 1,1-Diphenyl-2-picrylhydrazyl, Biosci. Biotechnol. Biochem., 62, 1201 (1998); https://doi.org/10.1271/bbb.62.1201
- C. Ramachandraiah, S.K.M. Nandish, J. Kengaiah, C. Srinivas, A. Shivaiah, S.S. Martin, M. Shinde, D. Sannaningaiah, Macrotyloma uniflorum Seed Aqueous Extract Exhibits Anticoagulant, Antiplatelet and Clot Dissolving Properties, Asian J. Pharm. Pharmacol., 5, 589 (2019); https://doi.org/10.31024/ajpp.2019.5.3.23
- D.P. Singh, K. Kumar and C. Sharma, Antimicrobial Active Macrocyclic Complexes of Cr(III), Mn(III) and Fe(III) with their Spectroscopic Approach, Eur. J. Med. Chem., 44, 3299 (2009); https://doi.org/10.1016/j.ejmech.2009.02.029
- G. Shivaraja, S. Sreenivasa, A.R. Ramesha, T.M. Chakrapani Rao and H. Nagabhushana, Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles, ChemistrySelect, 3, 8111 (2018); https://doi.org/10.1002/slct.201801364
References
A. Ayati, S. Emami, A. Asadipour, A. Shafiee and A. Foroumadi, Recent Applications of 1,3-thiazole Core Structure in the Identification of New Lead Compounds and Drug Discovery, Eur. J. Med. Chem., 97, 699 (2015); https://doi.org/10.1016/j.ejmech.2015.04.015
S. Nayak and S.L. Gaonkar, A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives, Mini-Rev. Med. Chem., 19, 215 (2019); https://doi.org/10.2174/1389557518666180816112151
R.N. Sharma, F.P. Xavier, K.K. Vasu, S.C. Chaturvedi and S.S. Pancholi, Synthesis of 4-Benzyl-1,3-thiazole Derivatives as Potential Anti-inflammatory Agents: An Analogue Based Drug Design Approach, J. Enzyme Inhib. Med. Chem., 24, 890 (2009); https://doi.org/10.1080/14756360802519558
C.B. Mishra, S. Kumari and M. Tiwari, Eur. J. Med. Chem., 92, 1 (2015); https://doi.org/10.1016/j.ejmech.2014.12.031
S. Bondock, T. Naser and Y.A. Ammar, Synthesis of Some New 2-(3-Pyridyl)-4,5-Disubstituted Thiazoles as Potent Antimicrobial Agents, Eur. J. Med. Chem., 62, 270 (2013); https://doi.org/10.1016/j.ejmech.2012.12.050
M.T. Chhabria, S. Patel, P. Modi and P.S. Brahmkshatriya, Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of Its Derivatives, Curr. Top. Med. Chem., 16, 2841 (2016); https://doi.org/10.2174/1568026616666160506130731
G. Chelucci and R.P. Thummel, Chiral 2,2¢-Bipyridines, 1,10-Phenan-throlines and 2,2¢:6¢,2¢¢-Terpyridines: Syntheses and Applications in Asymmetric Homogeneous Catalysis, Chem. Rev., 102, 3129 (2002); https://doi.org/10.1021/cr0101914
J.G. Cordaro, J.K. McCusker and R.G. Bergman, Synthesis of Mono-Substituted 2,2¢-Bipyridines, Chem. Commun., 1496 (2002); https://doi.org/10.1039/B203595B
D. Rocco, C.E. Housecroft and E.C. Constable, Synthesis of Terpyridines: Simple Reactions-What Could Possibly Go Wrong? Molecules, 24, 1799 (2019); https://doi.org/10.3390/molecules24091799
S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata and Y.H. Lee, Spin-Crossover in Cobalt(II) Compounds Containing Terpyridine and its Derivatives, Coord. Chem. Rev., 255, 1981 (2011); https://doi.org/10.1016/j.ccr.2011.05.016
I. Sasaki, J.-C. Daran and G. Commenges, The Simple Production of Nonsymmetric Quaterpyridines through Kröhnke Pyridine Synthesis, Beilstein J. Org. Chem., 11, 1781 (2015); https://doi.org/10.3762/bjoc.11.193
A.T. Baker, P. Singh and V. Vignevich, Iron(II) and Nickel(II) Complexes of 2,6-Di(thiazol-2-yl)pyridine and Related Ligands, Aust. J. Chem., 44, 1041 (1991); https://doi.org/10.1071/CH9911041
G.-Y. Li, K.-J. Du, J.-Q. Wang, J.-W. Liang, J.-F. Kou, X.-J. Hou, L.-N. Ji and H. Chao, Synthesis, Crystal Structure, DNA Interaction and Anti-cancer Activity of Tridentate Copper(II) Complexes, J. Inorg. Biochem., 119, 43 (2013); https://doi.org/10.1016/j.jinorgbio.2012.09.019
J.D. Nobbs, A.K. Tomov, R. Cariou, V.C. Gibson, A.J.P. White and G.J.P. Britovsek, Thio-Pybox and Thio-Phebox Complexes of Chromium, Iron, Cobalt and Nickel and their Application in Ethylene and Butadienepolymerisation Catalysis, Dalton Trans., 41, 5949 (2012); https://doi.org/10.1039/c2dt30324h
L. Li, K. Du, Y. Wang, H. Jia, X. Hou, H. Chao and L. Ji, Self-Activating Nuclease and Anticancer Activities of Copper(II) Complexes with Aryl-Modified 2,6-Di(thiazol-2-yl)pyridine, Dalton Trans., 42, 11576 (2013); https://doi.org/10.1039/c3dt50395j
K. Czerwiñska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shul’pina, N.S. Ikonnikov and G.B. Shul’pin, Copper(II) Complexes of Functionalized 2,2¢:6¢,2¢¢-Terpyridines and 2,6-Di(thiazol-2-yl)pyridine: Structure, Spectroscopy, Cytotoxicity and Catalytic Activity, Dalton Trans., 46, 9591 (2017); https://doi.org/10.1039/C7DT01244F
A. Maron, S. Kula, A. SzlapaKula, A. Switlicka, B. Machura, S. Krompiec, J.G. Malecki, R. Kruszynski, A. Chrobok, E. Schab-Balcerzak, S. Kotowicz, M. Siwy, K. Smolarek, S. Maækowski, H. Janeczek and M. Libera, 2,2¢:6¢,2¢¢-Terpyridine Analogues: Structural, Electrochemical and Photophysical Properties of 2,6-Di(thiazol-2-yl)-pyridine Derivatives, Eur. J. Org. Chem., 2730 (2017); https://doi.org/10.1002/ejoc.201700141
F. Fache, E. Schulz, M.L. Tommasino and M. Lemaire, Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis, Chem. Rev., 100, 2159 (2000); https://doi.org/10.1021/cr9902897
V.M. Manikandamathavan and B.U. Nair, DNA Binding and Cytotoxicity of Copper(II) Imidazole Terpyridine Complexes: Role of Oxyanion, Hydrogen Bonding and p-p interaction, Eur. J. Med. Chem., 68, 244 (2013); https://doi.org/10.1016/j.ejmech.2013.07.051
T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, HPLC Method for Evaluation of the Free Radical-scavenging Activity of Foods by using 1,1-Diphenyl-2-picrylhydrazyl, Biosci. Biotechnol. Biochem., 62, 1201 (1998); https://doi.org/10.1271/bbb.62.1201
C. Ramachandraiah, S.K.M. Nandish, J. Kengaiah, C. Srinivas, A. Shivaiah, S.S. Martin, M. Shinde, D. Sannaningaiah, Macrotyloma uniflorum Seed Aqueous Extract Exhibits Anticoagulant, Antiplatelet and Clot Dissolving Properties, Asian J. Pharm. Pharmacol., 5, 589 (2019); https://doi.org/10.31024/ajpp.2019.5.3.23
D.P. Singh, K. Kumar and C. Sharma, Antimicrobial Active Macrocyclic Complexes of Cr(III), Mn(III) and Fe(III) with their Spectroscopic Approach, Eur. J. Med. Chem., 44, 3299 (2009); https://doi.org/10.1016/j.ejmech.2009.02.029
G. Shivaraja, S. Sreenivasa, A.R. Ramesha, T.M. Chakrapani Rao and H. Nagabhushana, Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles, ChemistrySelect, 3, 8111 (2018); https://doi.org/10.1002/slct.201801364