Main Article Content

Abstract

In the present study, a novel ligand 2,6-bis(1,3-thiazol-2-yl)-4-(3,4,5-trimethoxyphenyl)pyridine and its Cu(II) and Ni(II) complexes were synthesized. All the synthesized compounds have been characterized by 1H & 13C NMR, mass, UV, FT-IR and ESR spectra. The antioxidant activity of the ligand and its Cu(II) and Ni(II) complexes were evaluated by the percentage of inhibition of 1,1-diphenyl-2-picryl hydrazyl (DPPH) and compounds found to be potent antioxidants. Also, synthesized compounds showed a mild antimicrobial activity in comparison with standard drugs. Copper(II) complexes showed a good antimicrobial activity than the parent ligand and nickel(II) complex. Interestingly, ligand and its metal complexes exhibit non-toxicity as they did not cause any effect to human erythrocyte.

Keywords

Antioxidant Hemolysis Antimicrobial activity Molecular docking

Article Details

How to Cite
Sunitha, M., Venkateshappa, G., Ramesh, G., Kengaiah, J., Shivaraja, G., Chandramohan, V., … Shivananda, M. (2020). Antioxidant, Antimicrobial, Molecular Docking Studies of Novel 2,6-bis(1,3-Thiazol-2-yl)-4-(3,4,5-trimethoxyphenyl)pyridine and its Cu(II) and Ni(II) Complexes. Asian Journal of Organic & Medicinal Chemistry, 5(2), 103–108. https://doi.org/10.14233/ajomc.2020.AJOMC-P250

References

  1. A. Ayati, S. Emami, A. Asadipour, A. Shafiee and A. Foroumadi, Recent Applications of 1,3-thiazole Core Structure in the Identification of New Lead Compounds and Drug Discovery, Eur. J. Med. Chem., 97, 699 (2015); https://doi.org/10.1016/j.ejmech.2015.04.015
  2. S. Nayak and S.L. Gaonkar, A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives, Mini-Rev. Med. Chem., 19, 215 (2019); https://doi.org/10.2174/1389557518666180816112151
  3. R.N. Sharma, F.P. Xavier, K.K. Vasu, S.C. Chaturvedi and S.S. Pancholi, Synthesis of 4-Benzyl-1,3-thiazole Derivatives as Potential Anti-inflammatory Agents: An Analogue Based Drug Design Approach, J. Enzyme Inhib. Med. Chem., 24, 890 (2009); https://doi.org/10.1080/14756360802519558
  4. C.B. Mishra, S. Kumari and M. Tiwari, Eur. J. Med. Chem., 92, 1 (2015); https://doi.org/10.1016/j.ejmech.2014.12.031
  5. S. Bondock, T. Naser and Y.A. Ammar, Synthesis of Some New 2-(3-Pyridyl)-4,5-Disubstituted Thiazoles as Potent Antimicrobial Agents, Eur. J. Med. Chem., 62, 270 (2013); https://doi.org/10.1016/j.ejmech.2012.12.050
  6. M.T. Chhabria, S. Patel, P. Modi and P.S. Brahmkshatriya, Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of Its Derivatives, Curr. Top. Med. Chem., 16, 2841 (2016); https://doi.org/10.2174/1568026616666160506130731
  7. G. Chelucci and R.P. Thummel, Chiral 2,2¢-Bipyridines, 1,10-Phenan-throlines and 2,2¢:6¢,2¢¢-Terpyridines: Syntheses and Applications in Asymmetric Homogeneous Catalysis, Chem. Rev., 102, 3129 (2002); https://doi.org/10.1021/cr0101914
  8. J.G. Cordaro, J.K. McCusker and R.G. Bergman, Synthesis of Mono-Substituted 2,2¢-Bipyridines, Chem. Commun., 1496 (2002); https://doi.org/10.1039/B203595B
  9. D. Rocco, C.E. Housecroft and E.C. Constable, Synthesis of Terpyridines: Simple Reactions-What Could Possibly Go Wrong? Molecules, 24, 1799 (2019); https://doi.org/10.3390/molecules24091799
  10. S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata and Y.H. Lee, Spin-Crossover in Cobalt(II) Compounds Containing Terpyridine and its Derivatives, Coord. Chem. Rev., 255, 1981 (2011); https://doi.org/10.1016/j.ccr.2011.05.016
  11. I. Sasaki, J.-C. Daran and G. Commenges, The Simple Production of Nonsymmetric Quaterpyridines through Kröhnke Pyridine Synthesis, Beilstein J. Org. Chem., 11, 1781 (2015); https://doi.org/10.3762/bjoc.11.193
  12. A.T. Baker, P. Singh and V. Vignevich, Iron(II) and Nickel(II) Complexes of 2,6-Di(thiazol-2-yl)pyridine and Related Ligands, Aust. J. Chem., 44, 1041 (1991); https://doi.org/10.1071/CH9911041
  13. G.-Y. Li, K.-J. Du, J.-Q. Wang, J.-W. Liang, J.-F. Kou, X.-J. Hou, L.-N. Ji and H. Chao, Synthesis, Crystal Structure, DNA Interaction and Anti-cancer Activity of Tridentate Copper(II) Complexes, J. Inorg. Biochem., 119, 43 (2013); https://doi.org/10.1016/j.jinorgbio.2012.09.019
  14. J.D. Nobbs, A.K. Tomov, R. Cariou, V.C. Gibson, A.J.P. White and G.J.P. Britovsek, Thio-Pybox and Thio-Phebox Complexes of Chromium, Iron, Cobalt and Nickel and their Application in Ethylene and Butadienepolymerisation Catalysis, Dalton Trans., 41, 5949 (2012); https://doi.org/10.1039/c2dt30324h
  15. L. Li, K. Du, Y. Wang, H. Jia, X. Hou, H. Chao and L. Ji, Self-Activating Nuclease and Anticancer Activities of Copper(II) Complexes with Aryl-Modified 2,6-Di(thiazol-2-yl)pyridine, Dalton Trans., 42, 11576 (2013); https://doi.org/10.1039/c3dt50395j
  16. K. Czerwiñska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shul’pina, N.S. Ikonnikov and G.B. Shul’pin, Copper(II) Complexes of Functionalized 2,2¢:6¢,2¢¢-Terpyridines and 2,6-Di(thiazol-2-yl)pyridine: Structure, Spectroscopy, Cytotoxicity and Catalytic Activity, Dalton Trans., 46, 9591 (2017); https://doi.org/10.1039/C7DT01244F
  17. A. Maron, S. Kula, A. SzlapaKula, A. Switlicka, B. Machura, S. Krompiec, J.G. Malecki, R. Kruszynski, A. Chrobok, E. Schab-Balcerzak, S. Kotowicz, M. Siwy, K. Smolarek, S. Maækowski, H. Janeczek and M. Libera, 2,2¢:6¢,2¢¢-Terpyridine Analogues: Structural, Electrochemical and Photophysical Properties of 2,6-Di(thiazol-2-yl)-pyridine Derivatives, Eur. J. Org. Chem., 2730 (2017); https://doi.org/10.1002/ejoc.201700141
  18. F. Fache, E. Schulz, M.L. Tommasino and M. Lemaire, Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis, Chem. Rev., 100, 2159 (2000); https://doi.org/10.1021/cr9902897
  19. V.M. Manikandamathavan and B.U. Nair, DNA Binding and Cytotoxicity of Copper(II) Imidazole Terpyridine Complexes: Role of Oxyanion, Hydrogen Bonding and p-p interaction, Eur. J. Med. Chem., 68, 244 (2013); https://doi.org/10.1016/j.ejmech.2013.07.051
  20. T. Yamaguchi, H. Takamura, T. Matoba and J. Terao, HPLC Method for Evaluation of the Free Radical-scavenging Activity of Foods by using 1,1-Diphenyl-2-picrylhydrazyl, Biosci. Biotechnol. Biochem., 62, 1201 (1998); https://doi.org/10.1271/bbb.62.1201
  21. C. Ramachandraiah, S.K.M. Nandish, J. Kengaiah, C. Srinivas, A. Shivaiah, S.S. Martin, M. Shinde, D. Sannaningaiah, Macrotyloma uniflorum Seed Aqueous Extract Exhibits Anticoagulant, Antiplatelet and Clot Dissolving Properties, Asian J. Pharm. Pharmacol., 5, 589 (2019); https://doi.org/10.31024/ajpp.2019.5.3.23
  22. D.P. Singh, K. Kumar and C. Sharma, Antimicrobial Active Macrocyclic Complexes of Cr(III), Mn(III) and Fe(III) with their Spectroscopic Approach, Eur. J. Med. Chem., 44, 3299 (2009); https://doi.org/10.1016/j.ejmech.2009.02.029
  23. G. Shivaraja, S. Sreenivasa, A.R. Ramesha, T.M. Chakrapani Rao and H. Nagabhushana, Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles, ChemistrySelect, 3, 8111 (2018); https://doi.org/10.1002/slct.201801364