Main Article Content
Abstract
This study has investigated the possible mode of action of several phytochemicals known to possess anti-inflammatory and anti-cancer properties. It was found by molecular docking studies that ferulic acid, gallic acid, pcoumaric acid, vanillin, myrecene, 4-vinyl phenol and catechol interacted with the binding sight of TNF-α which is the chief regulator of inflammation. This study suggest a possible role of these phytochemicals as anticancer and anti-inflammatory agents.
Keywords
Article Details
References
- L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang and L. Zhao, Oncotarget, 9, 7204 (2018); https://doi.org/10.18632/oncotarget.23208
- F. Balkwill, Tumour Necrosis Factor and Cancer, Nat. Rev. Cancer, 9, 361 (2009); https://doi.org/10.1038/nrc2628
- J.P. Waters, J.S. Pober and J.R. Bradley, Tumour Necrosis Factor and Cancer, J. Pathol., 230, 241 (2013); https://doi.org/10.1002/path.4188
- X. Zhao, W. Fan, Z. Xu, H. Chen, Y. He, G. Yang, G. Yang, H. Hu, S. Tang, P. Wang, Z. Zhang, P. Xu and M. Yu, Inhibiting Tumor Necrosis Factor-Alpha Diminishes Desmoplasia and Inflammation to Overcome Chemoresistance in Pancreatic Ductal Adenocarcinoma, Oncotarget, 7, 81110 (2016); https://doi.org/10.18632/oncotarget.13212
- F. Balkwill, TNF-a in Promotion and Progression of Cancer, Cancer Metastasis Rev., 25, 409 (2006); https://doi.org/10.1007/s10555-006-9005-3
- F. Caso, L. Costa, A. Del Puente and R. Scarpa, Psoriatic Arthritis and TNF Inhibitors: Advances on Effectiveness and Toxicity, Expert Opin. Biol. Ther., 15, 1 (2015); https://doi.org/10.1517/14712598.2015.973398
- C. Lindhaus, J. Tittelbach and P. Elsner, Cutaneous Side Effects of TNF-Alpha Inhibitors, JDDG, 15, 281 (2017); https://doi.org/10.1111/ddg.13200
- X. Wang and Y. Lin, Tumor Necrosis Factor and Cancer, Buddies or Foes?, Acta Pharmacol. Sin., 29, 1275 (2008); https://doi.org/10.1111/j.1745-7254.2008.00889.x
- R.-L. Ngoua-Meye-Misso, J.D.L.C. Ndong, C. Sima-Obiang, J.P. Ondo, G.R. Ndong-Atome, F. Ovono Abessolo and L.-C. Obame-Engonga, Phytochemical Studies, Antiangiogenic, Anti-inflammatory and Anti-oxidant Activities of Scyphocephalium ochocoa Warb. (Myristicaceae), Medicinal Plant from Gabon, Clin. Phytosci., 4, 15 (2018); https://doi.org/10.1186/s40816-018-0075-x
- M.E. Kim, J.Y. Na, Y.-D. Park and J.S. Lee, Anti-Neuroinflammatory Effects of Vanillin through the Regulation of Inflammatory Factors and NF-kB Signaling in LPS-Stimulated Microglia, Appl. Biochem. Biotechnol., 187, 884 (2019); https://doi.org/10.1007/s12010-018-2857-5
- X. Yan, D.-F. Liu, X.-Y. Zhang, D. Liu, S.-Y. Xu, G.-X. Chen, B.-X. Huang, W.-Z. Ren, W. Wang, S.-P. Fu and J.-X. Liu, Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-kB Signaling Pathway, Int. J. Mol. Sci., 18, (2017); https://doi.org/10.3390/ijms18020389
- H.-W. Leung, C.-H. Ko, G.G.-L. Yue, I. Herr and C.B.-S. Lau, The Natural Agent 4-Vinylphenol Targets Metastasis and Stemness Features in Breast Cancer Stem-like Cells, Cancer Chemother. Pharmacol., 82, 185 (2018); https://doi.org/10.1007/s00280-018-3601-0
- K.V. Dileep, I. Tintu, P.K. Mandal, P. Karthe, M. Haridas and C. Sadasivan, Binding to PLA2 May Contribute to the Anti-Inflammatory Activity of Catechol, Chem. Biol. Drug Des., 79, 143 (2012); https://doi.org/10.1111/j.1747-0285.2011.01258.x
- A. Jabbari, H. Sadeghian, A. Salimi, M. Mousavian, S.M. Seyedi and M. Bakavoli, 2-Prenylated m-Dimethoxybenzenes as Potent Inhibitors of 15-Lipooxygenase: Inhibitory Mechanism and SAR Studies, Chem. Biol. Drug Des., 88, 460 (2016); https://doi.org/10.1111/cbdd.12779
- M. Vosooghi and M. Amini, The Discovery and Development of Cyclo-oxygenase-2 Inhibitors as Potential Anticancer Therapies, Expert Opin. Drug Discov., 9, 255 (2014); https://doi.org/10.1517/17460441.2014.883377
- A.T. Rufino, M. Ribeiro, C. Sousa, F. Judas, L. Salgueiro, C. Cavaleiro and A.F. Mendes, Evaluation of the Anti-inflammatory, Anti-catabolic and Pro-anabolic Effects of E-Caryophyllene, Myrcene and Limonene in a Cell Model of Osteoarthritis, Eur. J. Pharmacol., 750, 141 (2015); https://doi.org/10.1016/j.ejphar.2015.01.018
- A.V.A. Mariadoss, R. Vinyagam, V. Rajamanickam, V. Senthilkumar, S. Venkatesan and E. David, Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review, Mini Rev. Med. Chem., (2019); https://doi.org/10.2174/1389557519666190311154425
- W. Kim, D. Lim and J. Kim, p-Coumaric Acid, A Major Active Compound of Bambusae Caulis in Taeniam, Suppresses Cigarette Smoke Induced Pulmonary Inflammation, Am. J. Chin. Med., 46, 407 (2018); https://doi.org/10.1142/S0192415X18500209
- S. Chowdhury, S. Ghosh, A.K. Das and P.C. Sil, Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy, Front. Pharmacol., 10, 27 (2019); https://doi.org/10.3389/fphar.2019.00027
- F. Gerin, H. Erman, M. Erboga, U. Sener, A. Yilmaz, H. Seyhan and A. Gurel, The Effects of Ferulic Acid Against Oxidative Stress and Inflam-mation in Formaldehyde-Induced Hepatotoxicity, Inflammation, 39, 1377 (2016); https://doi.org/10.1007/s10753-016-0369-4
- S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma and V. Beniwal, Probing Gallic Acid for Its Broad Spectrum Applications, Mini Rev. Med. Chem., 18, 1283 (2018); https://doi.org/10.2174/1389557518666180330114010
- Y. Fan, C.H. Piao, E. Hyeon, S.Y. Jung, J.-E. Eom, H.S. Shin, C.H. Song and O.H. Chai, Gallic Acid Alleviates Nasal Inflammation via Activation of Th1 And Inhibition of Th2 and Th17 in a Mouse Model of Allergic Rhinitis, Int. Immunopharmacol., 70, 512 (2019); https://doi.org/10.1016/j.intimp.2019.02.025
- M. Radan, M. Dianat, M. Badavi, S.A. Mard, V. Bayati and G. Goudarzi, Gallic Acid Protects Particulate Matter (PM10) Triggers Cardiac Oxidative Stress and Inflammation Causing Heart Adverse Events in Rats, Environ. Sci. Pollut. Res. Int., 26, 18200 (2019); https://doi.org/10.1007/s11356-019-05223-w
- P.P. Gupta, V.A. Bastikar, D. Kuciauskas, S.L. Kothari, J. Cicenas and M. Valius, Molecular Modeling and Structure-Based Drug Discovery Approach Reveals Protein Kinases as Off-Targets for Novel Anticancer Drug RH1, Med. Oncol., 34, 176 (2017); https://doi.org/10.1007/s12032-017-1011-5
References
L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang and L. Zhao, Oncotarget, 9, 7204 (2018); https://doi.org/10.18632/oncotarget.23208
F. Balkwill, Tumour Necrosis Factor and Cancer, Nat. Rev. Cancer, 9, 361 (2009); https://doi.org/10.1038/nrc2628
J.P. Waters, J.S. Pober and J.R. Bradley, Tumour Necrosis Factor and Cancer, J. Pathol., 230, 241 (2013); https://doi.org/10.1002/path.4188
X. Zhao, W. Fan, Z. Xu, H. Chen, Y. He, G. Yang, G. Yang, H. Hu, S. Tang, P. Wang, Z. Zhang, P. Xu and M. Yu, Inhibiting Tumor Necrosis Factor-Alpha Diminishes Desmoplasia and Inflammation to Overcome Chemoresistance in Pancreatic Ductal Adenocarcinoma, Oncotarget, 7, 81110 (2016); https://doi.org/10.18632/oncotarget.13212
F. Balkwill, TNF-a in Promotion and Progression of Cancer, Cancer Metastasis Rev., 25, 409 (2006); https://doi.org/10.1007/s10555-006-9005-3
F. Caso, L. Costa, A. Del Puente and R. Scarpa, Psoriatic Arthritis and TNF Inhibitors: Advances on Effectiveness and Toxicity, Expert Opin. Biol. Ther., 15, 1 (2015); https://doi.org/10.1517/14712598.2015.973398
C. Lindhaus, J. Tittelbach and P. Elsner, Cutaneous Side Effects of TNF-Alpha Inhibitors, JDDG, 15, 281 (2017); https://doi.org/10.1111/ddg.13200
X. Wang and Y. Lin, Tumor Necrosis Factor and Cancer, Buddies or Foes?, Acta Pharmacol. Sin., 29, 1275 (2008); https://doi.org/10.1111/j.1745-7254.2008.00889.x
R.-L. Ngoua-Meye-Misso, J.D.L.C. Ndong, C. Sima-Obiang, J.P. Ondo, G.R. Ndong-Atome, F. Ovono Abessolo and L.-C. Obame-Engonga, Phytochemical Studies, Antiangiogenic, Anti-inflammatory and Anti-oxidant Activities of Scyphocephalium ochocoa Warb. (Myristicaceae), Medicinal Plant from Gabon, Clin. Phytosci., 4, 15 (2018); https://doi.org/10.1186/s40816-018-0075-x
M.E. Kim, J.Y. Na, Y.-D. Park and J.S. Lee, Anti-Neuroinflammatory Effects of Vanillin through the Regulation of Inflammatory Factors and NF-kB Signaling in LPS-Stimulated Microglia, Appl. Biochem. Biotechnol., 187, 884 (2019); https://doi.org/10.1007/s12010-018-2857-5
X. Yan, D.-F. Liu, X.-Y. Zhang, D. Liu, S.-Y. Xu, G.-X. Chen, B.-X. Huang, W.-Z. Ren, W. Wang, S.-P. Fu and J.-X. Liu, Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-kB Signaling Pathway, Int. J. Mol. Sci., 18, (2017); https://doi.org/10.3390/ijms18020389
H.-W. Leung, C.-H. Ko, G.G.-L. Yue, I. Herr and C.B.-S. Lau, The Natural Agent 4-Vinylphenol Targets Metastasis and Stemness Features in Breast Cancer Stem-like Cells, Cancer Chemother. Pharmacol., 82, 185 (2018); https://doi.org/10.1007/s00280-018-3601-0
K.V. Dileep, I. Tintu, P.K. Mandal, P. Karthe, M. Haridas and C. Sadasivan, Binding to PLA2 May Contribute to the Anti-Inflammatory Activity of Catechol, Chem. Biol. Drug Des., 79, 143 (2012); https://doi.org/10.1111/j.1747-0285.2011.01258.x
A. Jabbari, H. Sadeghian, A. Salimi, M. Mousavian, S.M. Seyedi and M. Bakavoli, 2-Prenylated m-Dimethoxybenzenes as Potent Inhibitors of 15-Lipooxygenase: Inhibitory Mechanism and SAR Studies, Chem. Biol. Drug Des., 88, 460 (2016); https://doi.org/10.1111/cbdd.12779
M. Vosooghi and M. Amini, The Discovery and Development of Cyclo-oxygenase-2 Inhibitors as Potential Anticancer Therapies, Expert Opin. Drug Discov., 9, 255 (2014); https://doi.org/10.1517/17460441.2014.883377
A.T. Rufino, M. Ribeiro, C. Sousa, F. Judas, L. Salgueiro, C. Cavaleiro and A.F. Mendes, Evaluation of the Anti-inflammatory, Anti-catabolic and Pro-anabolic Effects of E-Caryophyllene, Myrcene and Limonene in a Cell Model of Osteoarthritis, Eur. J. Pharmacol., 750, 141 (2015); https://doi.org/10.1016/j.ejphar.2015.01.018
A.V.A. Mariadoss, R. Vinyagam, V. Rajamanickam, V. Senthilkumar, S. Venkatesan and E. David, Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review, Mini Rev. Med. Chem., (2019); https://doi.org/10.2174/1389557519666190311154425
W. Kim, D. Lim and J. Kim, p-Coumaric Acid, A Major Active Compound of Bambusae Caulis in Taeniam, Suppresses Cigarette Smoke Induced Pulmonary Inflammation, Am. J. Chin. Med., 46, 407 (2018); https://doi.org/10.1142/S0192415X18500209
S. Chowdhury, S. Ghosh, A.K. Das and P.C. Sil, Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy, Front. Pharmacol., 10, 27 (2019); https://doi.org/10.3389/fphar.2019.00027
F. Gerin, H. Erman, M. Erboga, U. Sener, A. Yilmaz, H. Seyhan and A. Gurel, The Effects of Ferulic Acid Against Oxidative Stress and Inflam-mation in Formaldehyde-Induced Hepatotoxicity, Inflammation, 39, 1377 (2016); https://doi.org/10.1007/s10753-016-0369-4
S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma and V. Beniwal, Probing Gallic Acid for Its Broad Spectrum Applications, Mini Rev. Med. Chem., 18, 1283 (2018); https://doi.org/10.2174/1389557518666180330114010
Y. Fan, C.H. Piao, E. Hyeon, S.Y. Jung, J.-E. Eom, H.S. Shin, C.H. Song and O.H. Chai, Gallic Acid Alleviates Nasal Inflammation via Activation of Th1 And Inhibition of Th2 and Th17 in a Mouse Model of Allergic Rhinitis, Int. Immunopharmacol., 70, 512 (2019); https://doi.org/10.1016/j.intimp.2019.02.025
M. Radan, M. Dianat, M. Badavi, S.A. Mard, V. Bayati and G. Goudarzi, Gallic Acid Protects Particulate Matter (PM10) Triggers Cardiac Oxidative Stress and Inflammation Causing Heart Adverse Events in Rats, Environ. Sci. Pollut. Res. Int., 26, 18200 (2019); https://doi.org/10.1007/s11356-019-05223-w
P.P. Gupta, V.A. Bastikar, D. Kuciauskas, S.L. Kothari, J. Cicenas and M. Valius, Molecular Modeling and Structure-Based Drug Discovery Approach Reveals Protein Kinases as Off-Targets for Novel Anticancer Drug RH1, Med. Oncol., 34, 176 (2017); https://doi.org/10.1007/s12032-017-1011-5