Main Article Content

Abstract

In present study, the synthesis, molecular structure, HOMO-LUMO and spectroscopic investigation of (E)-1-(2,4-dichloro-5-fluorophenyl)-3-(2,6-dichlorophenyl)prop-2-en-1-one (CFPCP) is reported. The structure of the title compound was affirmed based on FTIR, 1H NMR & 13C NMR spectroscopic techniques. The computational examination has been performed by employing density functional theory (DFT) method at B3LYP/6-311G++(d,p) basis set. The geometry of the title molecule has been optimized and established at the same level of theory. The various structural and quantum chemical parameters have been investigated for the title molecule at the 6-311G++(d,p) basis set. To explore the electron distribution, Mulliken atomic charges and molecular electrostatic potential surface are discussed. Besides, vibrational assignments were made and the scaled frequencies have been compared with the experimental frequencies. For the investigation of the absorption wavelength, excitation energy and the oscillator strength TD-DFT method using B3LYP/6-311G++(d,p) basis set is used. Some thermochemical functions have also been investigated using harmonic vibrational frequencies.

Keywords

DFT FMO (E)-1-(2,4-Dichloro-5-fluorophenyl)-3-(2,6-dichlorophenyl)prop-2-en-1-one 6-311 G(d,p)

Article Details

How to Cite
A. Adole, V., H. Waghchaure, R., B. Pawar, T., S. Jagdale, B., & H. Kapadnis, K. (2020). Synthesis, Molecular Structure, HOMO-LUMO and Spectroscopic Investigation of (E)-1-(2,4-Dichloro-5-fluorophenyl)-3-(2,6-dichlorophenyl)prop-2-en-1-one: A DFT Based Computational Exploration. Asian Journal of Organic & Medicinal Chemistry, 5(3), 242–248. https://doi.org/10.14233/ajomc.2020.AJOMC-P285

References

  1. M.J. Elarfi and H.A. Al-Difar, Synthesis of Some Heterocyclic Comp-ounds Derived from Chalcones, Sci. Rev. Chem. Commun., 2, 103 (2012).
  2. A.V. Velikorodov, V.A. Ionova, S.I. Temirbulatova, O.L. Titova and N.N. Stepkina, Synthesis and Application of Chalcones to the Preparation of Heterocyclic Structures, Russ. J. Org. Chem., 49, 1610 (2013); https://doi.org/10.1134/S1070428013110080
  3. O. Mazimba, Antimicrobial activities of Heterocycles Derived from Thienylchalcones, J. King Saud Univ. Sci., 27, 42 (2015); https://doi.org/10.1016/j.jksus.2014.06.003
  4. Z.N. Siddiqui, M. Asad and S. Praveen, Synthesis and Biological Activity of Heterocycles from Chalcone, Med. Chem. Res., 17, 318 (2008); https://doi.org/10.1007/s00044-007-9067-y
  5. V.D. Joshi, M.D. Kshirsagar and S. Singhal, Synthesis and Antimicrobial Activities of Various Pyrazolines from Chalcones., Int. J. ChemTech Res., 4, 971 (2012).
  6. C.A. Escobar, O. Donoso-Tauda, R. Araya-Maturana and D. Sicker, Synthesis of 1,5-Benzodiazepines with Unusual Substitution Pattern from Chalcones Under Solvent-Free Microwave Irradiation Conditions, Synth. Commun., 39, 166 (2008); https://doi.org/10.1080/00397910802372517
  7. K.L. Ameta, N.S. Rathore and B. Kumar, Synthesis and in vitro Anti Breast Cancer Activity of Some Novel 1,5-Benzothiazepine Derivatives, J. Serb. Chem. Soc., 77, 725 (2012); https://doi.org/10.2298/JSC110715219A
  8. S.S. Chobe, V.A. Adole, K.P. Deshmukh, T.B. Pawar and B.S. Jagdale, Poly (ethylene glycol)(PEG-400): A Green Approach Towards Synthesis of Novel Pyrazolo[3, 4-d]pyrimidin-6-amines Derivatives and their Antimicrobial Screening, Arch. Appl. Sci. Res., 6, 61 (2014).
  9. Z. Rozmer and P. Perjési, Naturally Occurring Chalcones and their Biological Activities, Phytochem. Rev., 15, 87 (2016); https://doi.org/10.1007/s11101-014-9387-8
  10. Y. Li, B. Sun, J. Zhai, L. Fu, S. Zhang, J. Zhang, H. Liu, W. Xie, H. Deng, Z. Chen and F. Sang, Synthesis and Antibacterial Activity of Four Natural Chalcones and their Derivatives, Tetrahedron Lett., 60, 151165 (2019); https://doi.org/10.1016/j.tetlet.2019.151165
  11. H. Boulebd, The Role of Benzylic-Allylic Hydrogen Atoms on the Anti-radical Activity of Prenylated Natural Chalcones: A Thermodynamic and Kinetic Study, J. Biomol. Struct. Dyn., (2020) (In press); https://doi.org/10.1080/07391102.2020.1740791
  12. A. Rammohan, J.S. Reddy, G. Sravya, C.N. Rao and G.V. Zyryanov, Chalcone Synthesis, Properties and Medicinal Applications: A Review, Environ. Chem. Lett., 18, 433 (2020); https://doi.org/10.1007/s10311-019-00959-w
  13. B. Ardiansah, Chalcones Bearing N, O, and S-Heterocycles: Recent Notes on their Biological Significances, J. Appl. Pharm. Sci., 9, 117 (2019); https://doi.org/10.7324/JAPS.2019.90816
  14. K. Vongdeth, P. Han, W. Li and Q.A. Wang, Synthesis and Antiproli-ferative Activity of Natural and Non-Natural Polymethoxychalcones and Polymethoxyflavones, Chem. Nat. Compd., 55, 11 (2019); https://doi.org/10.1007/s10600-019-02605-x
  15. V.A. Adole, T.B. Pawar and B.S. Jagdale, Aqua-Mediated Rapid and Benign Synthesis of 1,2,6,7-Tetrahydro-8H-indeno[5,4-b]furan-8-one-Appended Novel 2-Arylidene Indanones of Pharmacological Interest at Ambient Temperature, J. Chin. Chem. Soc. (Taipei), 67, 306 (2020); https://doi.org/10.1002/jccs.201900015
  16. V. Patil, S.A. Patil, R. Patil, A. Bugarin, K. Beaman and S.A. Patil, Exploration of (Hetero)aryl Derived Thienylchalcones for Antiviral and Anticancer Activities, Med. Chem., 15, 150 (2019); https://doi.org/10.2174/1573406414666180524074648
  17. A. Singh, A. Viljoen, L. Kremer and V. Kumar, Synthesis and Anti-mycobacterial Evaluation of Piperazyl-alkyl-Ether Linked 7-Chloro-quinoline-Chalcone/Ferrocenyl Chalcone Conjugates, ChemistrySelect, 3, 8511 (2018); https://doi.org/10.1002/slct.201801453
  18. W.C. Chu, P.Y. Bai, Z.Q. Yang, D.Y. Cui, Y.G. Hua, Y. Yang, Q.Q. Yang, E. Zhang and S. Qin, Synthesis and Antibacterial Evaluation of Novel Cationic Chalcone Derivatives Possessing Broad Spectrum Antibacterial Activity, Eur. J. Med. Chem., 143, 905 (2018); https://doi.org/10.1016/j.ejmech.2017.12.009
  19. Y.H. Wang, H.H. Dong, F. Zhao, J. Wang, F. Yan, Y.Y. Jiang and Y.S. Jin, Synthesis and Synergistic Antifungal Effects of Chalcones against Drug Resistant Candida albicans, Bioorg. Med. Chem. Lett., 26, 3098 (2016); https://doi.org/10.1016/j.bmcl.2016.05.013
  20. N. Mateeva, S.V. Eyunni, K.K. Redda, U. Ononuju, T.D. Hansberry II, I.I.C. Aikens and A. Nag, Functional Evaluation of Synthetic Flavonoids and Chalcones for Potential Antiviral and Anticancer Properties, Bioorg. Med. Chem. Lett., 27, 2350 (2017); https://doi.org/10.1016/j.bmcl.2017.04.034
  21. D.K. Mahapatra, S.K. Bharti and V. Asati, Chalcone Derivatives: Anti-Inflammatory Potential and Molecular Targets Perspectives, Curr. Top. Med. Chem., 17, 3146 (2017); https://doi.org/10.2174/1568026617666170914160446
  22. A.M. AbuDief, I.F. Nassar and W.H. Elsayed, Magnetic NiFe2O4 Nanoparticles: Efficient, Heterogeneous and Reusable Catalyst for Synthesis of Acetylferrocene Chalcones and their Anti-tumour Activity, Appl. Organomet. Chem., 30, 917 (2016); https://doi.org/10.1002/aoc.3521
  23. V.A. Adole, B.S. Jagdale, T.B. Pawar and A.A. Sagane, Ultrasound Promoted Stereoselective Synthesis of 2,3-Dihydrobenzofuran Appended Chalcones at Ambient Temperature, S. Afr. J. Chem., 73, 35 (2020); https://doi.org/10.17159/0379-4350/2020/v73a6
  24. H. Kumar, V. Devaraji, R. Joshi, M. Jadhao, P. Ahirkar, R. Prasath, P. Bhavana and S.K. Ghosh, Antihypertensive Activity of a Quinoline Appended Chalcone Derivative and its Site Specific Binding Interaction with a Relevant Target Carrier Protein, RSC Adv., 5, 65496 (2015); https://doi.org/10.1039/C5RA08778C
  25. M. Mellado, C.O. Salas, E. Uriarte, D. Viña, C. JaraGutiérrez, M.J. Matos and M. Cuellar, Design, Synthesis and Docking Calculations of Prenylated Chalcones as Selective Monoamine Oxidase B Inhibitors with Antioxidant Activity, ChemistrySelect, 4, 7698 (2019); https://doi.org/10.1002/slct.201901282
  26. Y. Xue, Y. Liu, L. Zhang, H. Wang, Q. Luo, R. Chen, Y. Liu and Y. Li, Antioxidant and Spectral Properties of Chalcones and Analogous Aurones: Theoretical Insights, Int. J. Quantum Chem., 119, e25808 (2019); https://doi.org/10.1002/qua.25808
  27. C.A. Calliste, J.B. Le, P. Trouillas, C. Pouget, G. Habrioux, A.J. Chulia and J.L. Duroux, Chalcones: Structural Requirements for Antioxidant, Estrogenic and Antiproliferative Activities, Anticancer Res., 21, 3949 (2001).
  28. C.S. Sharma, K.S. Shekhawat, C.S. Chauhan and N. Kumar, Synthesis and Anticonvulsant Activity of Some Chalcone Derivatives, J. Chem. Pharm. Res., 5, 450 (2013).
  29. U. Berar, Chalcones: Compounds Possessing a Diversity in Applications, Orbital Elec. J. Chem., 4, 209 (2012).
  30. S.L. Gaonkar and U.N. Vignesh, Synthesis and Pharmacological Properties of Chalcones: a Review, Res. Chem. Intermed., 43, 6043 (2017); https://doi.org/10.1007/s11164-017-2977-5
  31. F. Bois, C. Beney, A. Boumendjel, A.M. Mariotte, G. Conseil and A. Di Pietro, Halogenated Chalcones with High-Affinity Binding to P-Glycoprotein: Potential Modulators of Multidrug Resistance, J. Med. Chem., 41, 4161 (1998); https://doi.org/10.1021/jm9810194
  32. C. Yamali, H.I. Gul, H. Sakagami and C.T. Supuran, Synthesis and Bioactivities of Halogen Bearing Phenolic Chalcones and their Corresponding bis-Mannich Bases, J. Enzyme Inhib. Med. Chem., 31(sup4), 125 (2016); https://doi.org/10.1080/14756366.2016.1221825
  33. K.L. Amole, I.A. Bello and A.O. Oyewale, Synthesis, Characterization and Antibacterial Activities of New Fluorinated Chalcones, Chemistry Africa, 2, 47 (2019); https://doi.org/10.1007/s42250-019-00043-4
  34. K.R. Abdellatif, H.A. Elshemy, S.A. Salama and H.A. Omar, Synthesis, Characterization and Biological Evaluation of Novel 4¢-Fluoro-2¢-hydroxychalcone Derivatives as Antioxidant, Anti-inflammatory and Analgesic Agents, J. Enzyme Inhib. Med. Chem., 30, 484 (2015); https://doi.org/10.3109/14756366.2014.949255
  35. S. Burmaoglu, O. Algul, D.A. Anýl, A. Gobek, G.G. Duran, R.H. Ersan and N. Duran, Synthesis and Anti-Proliferative Activity of Fluoro-Substituted Chalcones, Bioorg. Med. Chem. Lett., 26, 3172 (2016); https://doi.org/10.1016/j.bmcl.2016.04.096
  36. C.T. Hsieh, T.J. Hsieh, M. El-Shazly, D.W. Chuang, Y.H. Tsai, C.T. Yen, S.F. Wu, Y.C. Wu and F.R. Chang, Synthesis of Chalcone Derivatives as Potential Anti-Diabetic Agents, Bioorg. Med. Chem. Lett., 22, 3912 (2012); https://doi.org/10.1016/j.bmcl.2012.04.108
  37. S. Burmaoglu, O. Algul, A. Gobek, D. Aktas Anil, M. Ulger, B.G. Erturk, E. Kaplan, A. Dogen and G. Aslan, Design of Potent Fluoro-Substituted Chalcones as Antimicrobial Agents, J. Enzyme Inhib. Med. Chem., 32, 490 (2017); https://doi.org/10.1080/14756366.2016.1265517
  38. V.A. Adole, Synthetic Approaches for the Synthesis of Dihydropyrimi-dinones/Thiones (Biginelli Adducts): A Concise Review, World J. Pharm. Res., 9, 1067 (2020); https://doi.org/10.20959/wjpr20206-17660
  39. V.A. Adole, T.B. Pawar, P.B. Koli and B.S. Jagdale, Exploration of Catalytic Performance of Nano-La2O3 as An Efficient Catalyst for Dihydro-pyrimidinone/thione Synthesis and Gas Sensing, J. Nanostruct. Chem., 9, 61 (2019); https://doi.org/10.1007/s40097-019-0298-5
  40. V.A. Adole, R.A. More, B.S. Jagdale, T.B. Pawar and S.S. Chobe, Efficient Synthesis, Antibacterial, Antifungal, Antioxidant and Cytotoxicity Study of 2-(2-Hydrazineyl)thiazole Derivatives, ChemistrySelect, 5, 2778 (2020); https://doi.org/10.1002/slct.201904609
  41. L. Mammino, Intramolecular Hydrogen Bonding Patterns, Conformational Preferences and Molecular Properties of Dimeric Acylphloroglucinols: An ab initio and DFT Study, J. Mol. Struct., 1176, 488 (2019); https://doi.org/10.1016/j.molstruc.2018.07.013
  42. G.T. Huang and J.S. Yu, Analyses on Molecular Properties of the Diamidinate CrI–CrI Complex by Multireference and DFT Approaches, J. Phys. Chem. A, 123, 7803 (2019); https://doi.org/10.1021/acs.jpca.9b04423
  43. M.F. Hassan and A.N. Ayyash, Study of Spectral and Molecular Properties of Polyatomic Molecule by Semiempirical and DFT Methods, Asian J. Res. Chem, 12, 330 (2019); https://doi.org/10.5958/0974-4150.2019.00061.0
  44. V.A. Adole, R.H. Waghchaure, B.S. Jagdale, T.B. Pawar and S.S. Pathade, Molecular Structure, Frontier Molecular Orbital and Spectroscopic Examination in Dihydropyrimidinones: A Comparative Computational Approach, Int. J. Adv. Sci. Res., 11, 64 (2020).
  45. M. Bourass, A. Touimi Benjelloun, M. Benzakour, M. Mcharfi, F. Jhilal, F. Serein-Spirau, J. Marc Sotiropoulos and M. Bouachrine, DFT/TD-DFT Characterization of Conjugational Electronic Structures and Spectral Properties of Materials Based on Thieno[3,2-b][1]benzothio-phene for Organic Photovoltaic and Solar Cell Applications, J. Saudi Chem. Soc., 21, 563 (2017); https://doi.org/10.1016/j.jscs.2017.01.001
  46. N.B. Azaza, S. Elleuch, S. Khemakhem, Y. Abid and H. Ammar, Synthesis and Spectral Properties of Coumarins Derivatives Fluore-scence Emitters: Experiment and DFT/TDDFT Calculations, Opt. Mater., 83, 138 (2018); https://doi.org/10.1016/j.optmat.2018.05.082
  47. T.B. Pawar, B.S. Jagdale, A.B. Sawant and V.A. Adole, DFT Studies of 2-[(2-Substituted phenyl)carbamoyl]benzoic Acids, J. Chem. Biol. Phys. Sci., 7, 167 (2017).
  48. P. Gasiorski, M. Matusiewicz, E. Gondek, T. Uchacz, K. Wojtasik, A. Danel, Y. Shchur and A.V. Kityk, Synthesis and Spectral Properties of Halogen Methyl-phenyl-pyrazoloquinoxaline Fluorescence Dyes: Experiment and DFT/TDDFT Calculations, J. Lumin., 198, 370 (2018); https://doi.org/10.1016/j.jlumin.2018.02.037
  49. H. Tezcan, H. Senöz and N. Tokay, Experimental and Quantum Chemical Studies of the Structural and Spectral Properties of Novel Diazenyl Formazans, J. Mol. Struct., 1190, 171 (2019); https://doi.org/10.1016/j.molstruc.2019.04.055
  50. V.A. Adole, R.H. Waghchaure, B.S. Jagdale and T.B. Pawar, Investigation of Structural and Spectroscopic Parameters of Ethyl 4-(4-isopropylphenyl)-6-methyl-2-oxo-1,2,3,4-Tetrahydropyrimidine-5-carboxylate: A DFT Study, Chem. Biol. Interf., 10, 22 (2020).
  51. J. Kausteklis, V. Aleksa, M.A. Iramain and S.A. Brandán, DFT and Vibrational Spectroscopy Study of 1-butyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid, J. Mol. Struct., 1175, 663 (2019); https://doi.org/10.1016/j.molstruc.2018.08.014
  52. B. Amul, S. Muthu, M. Raja and S. Sevvanthi, Spectral, DFT and Molecular Docking Investigations on Etodolac, J. Mol. Struct., 1195, 747 (2019); https://doi.org/10.1016/j.molstruc.2019.06.047
  53. V.S. Kumar, Y.S. Mary, K. Pradhan, D. Brahman, Y.S. Mary, R. Thomas, M.S. Roxy and C.V. Alsenoy, Synthesis, Spectral Properties, Chemical Descriptors and Light Harvesting Studies of a New Bioactive Azo Imidazole Compound, J. Mol. Struct., 1199, 127035 (2020); https://doi.org/10.1016/j.molstruc.2019.127035
  54. V.A. Adole, B.S. Jagdale, T.B. Pawar and A.B. Sawant, Experimental and Theoretical Exploration on Single Crystal, Structural and Quantum Chemical Parameters of (E)-7-arylidene-1,2,6,7-tetrahydro-8H-indeno-[5,4-b]furan8-one Derivatives: A Comparative Study, J. Chin. Chem. Soc., (2020) (In press); https://doi.org/10.1002/jccs.202000006
  55. M. Drozd, The Equilibrium Structures, Vibrational Spectra, NLO and Directional Properties of Transition Dipole Moments of Diguanidinium Arsenate Monohydrate and Diguanidinium Phosphate Monohydrate: The Theoretical DFT Calculations, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 1069 (2006); https://doi.org/10.1016/j.saa.2006.02.007
  56. J.S.P.P. Leela, R. Hemamalini, S. Muthu and A.A. Al-Saadi, Spectroscopic Investigation (FTIR spectrum), NBO, HOMO-LUMO Energies, NLO and Thermodynamic Properties of 8-methyl-N-vanillyl-6-nonenamide by DFT Methods, Spectrochim. Acta A Mol. Biomol. Spectrosc., 146, 177 (2015); https://doi.org/10.1016/j.saa.2015.03.027
  57. J. Lorenc, I. Bryndal, M. Marchewka, E. Kucharska, T. Lis and J. Hanuza, Crystal and Molecular Structure of 2-Amino-5-chloro-pyridinium Hydrogen Selenate-Its IR and Raman Spectra, DFT Calculations and Physicochemical Properties, J. Raman Spectrosc., 39, 863 (2008); https://doi.org/10.1002/jrs.1925
  58. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT (2004).