Main Article Content

Abstract

Substituted 2-(2-(4-aryloxybenzylidene)hydrazinyl)benzothiazole/benzoxazoles series were designed through molecular hybridization and synthesized in condensation reaction of hydrazinylbenzothiazole/benzoxazole with substituted aryloxy benzaldehydes. All the synthesized compounds were assigned structure based on spectral data and were evaluated for antimycobacterial activity. Among both benzothiazole and benzoxazole derivatives, the compounds 8f and 9e were found to show most potent antitubercular activity with MIC value of 0.89 and 0.92 μM which are on a par with those of standard antitubercular drugs. In order to know the binding interactions of all the compounds were docked within the mycobacterial pantothenate synthetase, which showed interactions with Asp88, Arg200, Ser196, Asn199, Met 195 and Lys 160 of pantothenate synthetase.

Keywords

Benzoxazole Benzothiazole Antitubercular Pantothenate synthetase Docking

Article Details

How to Cite
Aruna, G., Kulkarni, R., Machaa, B., Jojula, M., Gunda, S., & Achaiah, G. (2020). Design, Synthesis and Evaluation of Aryloxybenzylidene Hydrazinyl-Benzoxazoles/Benzothiazoles Analogs as Antimycobacterial Agents. Asian Journal of Organic & Medicinal Chemistry, 5(3), 185–191. https://doi.org/10.14233/ajomc.2020.AJOMC-P272

References

  1. K.J. Seung, S. Keshavjee and M.L. Rich, Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
  2. A. Ahmed, D. Mekonnen, A.M. Shiferaw, F. Belayneh and K.M. Yenit, Incidence and Determinants of Tuberculosis Infection Among Adult Patients with HIV Attending HIV Care in North-East Ethiopia: A Retrospective Cohort Study, BMJ Open, 8, e016961 (2018); https://doi.org/10.1136/bmjopen-2017-016961
  3. World health organization Reviewed, https://www.who.int/tb/publications/global_report/en/ 2019
  4. J. Bruchfeld, M. Correia-Neves and G. Källenius, Tuberculosis and HIV Coinfection, Cold Spring Harb. Perspect. Med., 5, a017871 (2015); https://doi.org/10.1101/cshperspect.a017871
  5. R.L. Jarvest, J.M. Berge, M.J. Brown, P. Brown, J.S. Elder, A.K. Forrest, C.S.V. Houge-Frydrych, P.J. O’Hanlon, D.J. McNair, S. Rittenhouse and R.J. Sheppard, Optimisation of Aryl Substitution Leading to Potent Methionyl tRNA Synthetase Inhibitors with Excellent Gram-positive Antibacterial Activity, Bioorg. Med. Chem. Lett., 13, 665 (2003); https://doi.org/10.1016/S0960-894X(02)01027-2
  6. R.L. Jarvest, S.G. Erskine, A.K. Forrest, A.P. Fosberry, M.J. Hibbs, J.J. Jones, P.J. O’Hanlon, R.J. Sheppard and A. Worby, Discovery and Optimisation of Potent, Selective, Ethanolamine Inhibitors of Bacterial Phenylalanyl tRNA Synthetase, Bioorg. Med. Chem. Lett., 15, 2305 (2005); https://doi.org/10.1016/j.bmcl.2005.03.003
  7. S.Y. Kim and J. Lee, 3-D-QSAR Study and Molecular Docking of Methionyl-tRNA Synthetase Inhibitors, Bioorg. Med. Chem., 11, 5325 (2003); https://doi.org/10.1016/j.bmc.2003.09.044
  8. S.Y. Kim, Y.S. Lee, T. Kang, S. Kim and J. Lee, Pharmacophore-based Virtual Screening: The Discovery of Novel Methionyl-tRNA Synthetase Inhibitors, Bioorg. Med. Chem. Lett., 16, 4898 (2006); https://doi.org/10.1016/j.bmcl.2006.06.057
  9. Farhanullah, S.Y. Kim, E.-J. Yoon, E.-C. Choi, S. Kim, T. Kang, F. Samrin, S. Puri and J. Lee, Design and Synthesis of Quinolinones as Methionyl-tRNA Synthetase Inhibitors, Bioorg. Med. Chem., 14, 7154 (2006); https://doi.org/10.1016/j.bmc.2006.06.062
  10. D. Mitchison and G. Davies, The Chemotherapy of Ruberculosis: Past, Present and Future [State of the Art], Int. J. Tuberc. Lung Dis., 16, 724 (2012); https://doi.org/10.5588/ijtld.12.0083
  11. J.B. Li, L. Xia, B. Wu, T. Wang and Z. Jiang, Design, Synthesis and Biological Estimation of 1-(Benzoxazole-2-yl)piperazine and 4-(Benzoxazole-2-yl)piperidine Derivatives as Potential a1-AR Antagonists, Chin. Chem. Lett., 19, 1193 (2008); https://doi.org/10.1016/j.cclet.2008.06.042
  12. A. Rouf and C. Tanyeli, Bioactive Thiazole and Benzothiazole Derivatives, Eur. J. Med. Chem., 97, 911 (2015); https://doi.org/10.1016/j.ejmech.2014.10.058
  13. T. Hisano, M. Ichikawa, K. Tsumoto and M. Tasaki, Synthesis of Benzoxazoles, Benzothiazoles and Benzimidazoles and Evaluation of Their Antifungal, Insecticidal and Herbicidal Activities, Chem. Pharm. Bull. (Tokyo), 30, 2996 (1982); https://doi.org/10.1248/cpb.30.2996
  14. B. Gong, F. Hong, C. Kohm, L. Bonham and P. Klein, Synthesis and SAR of 2-Arylbenzoxazoles, Benzothiazoles and Benzimidazoles as Inhibitors of Lysophosphatidic Acid Acyltransferase-b, Bioorg. Med. Chem. Lett., 14, 1455 (2004); https://doi.org/10.1016/j.bmcl.2004.01.023
  15. O. Temiz-Arpaci, B. Tekiner-Gulbas, I. Yildiz, E. Aki-Sener and I. Yalcin, 3D-QSAR Analysis on Benzazole Derivatives as Eukaryotic Topoisomerase II Inhibitors by Using Comparative Molecular Field Analysis Method, Bioorg. Med. Chem., 13, 6354 (2005); https://doi.org/10.1016/j.bmc.2005.06.002
  16. R. Romagnoli, P.G. Baraldi, M.D. Carrion, O. Cruz-Lopez, D. Preti, M.A. Tabrizi, F. Fruttarolo, F. Heilmann, J. Bermejo and J. Estevez, Hybrid Molecules Containing Benzo[4,5]imidazo[1,2-d][1,2,4]thiadiazole and a-Bromoacryloyl Moieties as Potent Apoptosis Inducers on Human Myeloid Leukaemia Cells, Bioorg. Med. Chem. Lett., 17, 2844 (2007); https://doi.org/10.1016/j.bmcl.2007.02.048
  17. A. Shaista and P. Amrita, Benzothiazole-A Magic Molecule, Int. J. Pharm. Sci. Res., 8, 4909 (2017).
  18. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward and D. Forman, Global Cancer Statistics, Cancer J. Clin., 61, 69 (2011); https://doi.org/10.3322/caac.20107
  19. L. Ouyang, Y. Huang, Y. Zhao, G. He, Y. Xie, J. Liu, J. He, B. Liu and Y. Wei, Preparation, Antibacterial Evaluation and Preliminary Structure-Activity Relationship (SAR) Study of Benzothiazol- and Benzoxazol-2-amine Derivatives, Bioorg. Med. Chem. Lett., 22, 3044 (2012); https://doi.org/10.1016/j.bmcl.2012.03.079
  20. V.N. Telvekar, V.K. Bairwa, K. Satardekar and A. Bellubi, Novel 2-(2-(4-Aryloxybenzylidene)hydrazinyl)benzothiazole Derivatives as Anti-tubercular Agents, Bioorg. Med. Chem. Lett., 22, 649 (2012); https://doi.org/10.1016/j.bmcl.2011.10.064
  21. D. Murahari, S. Tanniru, L. Poonem, A. Paramesh, K. Sudheer Kumar, M Jojula and S. Gunda, Anti-Mycobacterial Screening Methods for New Compounds Identification, Eur. J. Biomed. Pharm. Sci., 5, 584 (2018).
  22. A.W. Hung, H.L. Silvestre, S. Wen, A. Ciulli, T.L. Blundell and C. Abell, Application of Fragment Growing and Fragment Linking to the Discovery of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase, Angew. Chem. Int. Ed., 48, 8452 (2009); https://doi.org/10.1002/anie.200903821
  23. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256