Main Article Content

Abstract

In this work, the geometry optimization and harmonic vibrational wavenumbers of kaempferide (5,7-dihydroxy-4-methoxyflavone) were computed by density functional theory (DFT) method. Theoretically computed vibrational wavenumbers were compared with experimental values and the interpretation of the vibrational spectra has been studied. Frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) analysis of the title compound have been carried out. The 1H & 13C NMR, UV visible and electronic properties of the compound were investigated theoretically and compared with the experimental values. Molecular docking study of the compound against cytochrome P450 family enzymes (CYPs 1A1, 1A2, 3A4, 2C8, 2C9 and 2D6) were also studied and the results revealed that the title compound interact with human CYP2C8 enzymes with minimum binding energy of -9.43 kcal/mol. The compound forms hydrogen bond with the residues of Thr302, Thr305, Leu361, Val362, Cys435, Gln356 and Ala297. Thus, these studies assist to understand the inhibitory mechanism of kaempferide with CYP450 enzymes and may facilitate significant clinical implications in the prevention and treatment of various therapeutic diseases.

Keywords

Kaempferide Cytochrome P450 Nucleophilic Electrophilic Molecular docking Binding energy

Article Details

How to Cite
Harikrishnan, A., & Madivanane, R. (2020). Computational, Experimental Structural Characterization and Molecular Docking Studies of 5,7-Dihydroxy-4-methoxyflavone against Cytochrome P450 Enzymes. Asian Journal of Organic & Medicinal Chemistry, 5(3), 197–207. https://doi.org/10.14233/ajomc.2020.AJOMC-P275

References

  1. G.R. Beecher, Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake, J. Nutr., 133, 3248S (2003); https://doi.org/10.1093/jn/133.10.3248S
  2. J.A. Ross and C.M. Kasum, Dietary Flavonoids: Bioavailability, Metabolic Effects and Safety, Annu. Rev. Nutr., 22, 19 (2002); https://doi.org/10.1146/annurev.nutr.22.111401.144957
  3. M. Asif and E. Khodadadi, Medicinal Uses and Chemistry of Flavonoid Contents of Some Common Edible Tropical Plants, J. Paramed. Sci., 4, 119 (2013); https://doi.org/10.22037/JPS.V4I3.4648
  4. D. Liu, W. Qu and J.Y. Liang, Flavonoids and Other Constituents from Alpinia sichuanensis Z.Y. Zhu, Biochem. System. Ecol., 46, 127 (2013); https://doi.org/10.1016/j.bse.2012.09.022
  5. V. Martineti, I. Tognarini, C. Azzari, S.C. Sala, F. Clematis, M. Dolci, V. Lanzotti, F. Tonelli, M.L. Brandi and P. Curir, Inhibition of in vitro Growth and Arrest in the G0/G1 Phase of HCT8 Line Human Colon Cancer Cells by Kaempferide Triglycoside from Dianthus caryophyllus, Phytother Res., 24, 1302 (2010); https://doi.org/10.1002/ptr.3105
  6. H. Gao, B. Liu, F. Liu and Y.S. Chen, Anti-Proliferative Effect of Camellianin A in Adinandra nitida Leaves and Its Apoptotic Induction in Human Hep G2 and MCF-7 Cells, Molecules 15, 3878 (2010); https://doi.org/10.3390/molecules15063878
  7. A.K. Calgarotto, S. Miotto, K.M. Honorio, A.B.F. Da Silva, S. Marangoni, J.L. Silva, M. Comar Jr., K.M.T. Oliveira and S.L. da Silva, A Multivariate Study on Flavonoid Compounds Scavenging the Peroxy-nitrite Free Radical, J. Mol. Struct. Theochem., 808, 25 (2007); https://doi.org/10.1016/j.theochem.2006.12.031
  8. L.R. Nath, J.N. Gorantla, S.M. Joseph, J. Antony, S. Thankachan, D.B. Menon, S. Sankar, R.S. Lankalapalli and R.J. Anto, Kaempferide, The Most Active Among the Four Flavonoids Isolated and Characterized from Chromolaena odorata, Induces Apoptosis in Cervical Cancer Cells While Being Pharmacologically Safe, RSC Adv., 5, 100912 (2015); https://doi.org/10.1039/C5RA19199H
  9. H. Tani, K. Hasumi, T. Tatefuji, K. Hashimoto, H. Koshino and S. Takahashi, Inhibitory Activity of Brazilian Green Propolis Components and their Derivatives on the Release of cys-Leukotrienes, Bioorg. Med. Chem., 18, 151 (2010); https://doi.org/10.1016/j.bmc.2009.11.007
  10. A.H. Banskota, Y. Tezuka, J.K. Prasain, K. Matsushige, I. Saiki and S. Kadota, Chemical Constituents of Brazilian Propolis and Their Cytotoxic Activities, J. Nat. Prod., 61, 896 (1998); https://doi.org/10.1021/np980028c
  11. E. Srinivasan and R. Rajasekaran, Comparative Binding of Kaempferol and Kaempferide in Inhibiting the Aggregate Formation of Mutant (G85R) SOD1 Protein in Familial Amyotrophic Lateral Sclerosis: A Quantum Chemical and Molecular Mechanics Study, BioFactors, 44, 431(2018); https://doi.org/10.1002/biof.1441
  12. D. Wang, X. Zhang, D. Li, W. Hao, F. Meng, B. Wang, J. Han and Q. Zheng, Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3b Pathway, Mediators of Inflamm., 2017, 5278218 (2017); https://doi.org/10.1155/2017/5278218
  13. V.-S. Nguyen, L. Shi, F.-Q. Luan and Q.-A. Wang, Synthesis of Kaemp-feride Mannich Base Derivatives and their Antiproliferative Activity on Three Human Cancer Cell Lines, Acta Biochim. Polon., 62, 547 (2015); https://doi.org/10.18388/abp.2015_992
  14. Z. Ji, B. Wang, K. Yan, L. Dong, G. Meng and L. Shi, A Linear Program-ming Computational Framework Integrates Phosphor-Proteomics and Prior Knowledge to Predict Drug Efficacy, BMC Syst. Biol., 11, 103 (2017); https://doi.org/10.1186/s12918-017-0501-6
  15. S. Kumkarnjana, R. Suttisri, U. Nimmannit, A. Sucontphunt, M. Khongkow, T. Koobkokkruad and N. Vardhanabhuti, Flavonoids Kaempferide and 4,2¢-Dihydroxy-4¢,5¢,6¢-trimethoxychalcone Inhibit Mitotic Clonal Expansion and Induce Apoptosis During the Early Phase of Adipogenesis in 3T3-L1 Cells, J. Integr. Med., 17, 288 (2019); https://doi.org/10.1016/j.joim.2019.04.004
  16. Y.S. Loh, G. Li, K. Fan, I. Ahmed, B. Roufogalis and D. Sze, Kaempferide Targets Side Population, the Putative Cancer Stem Cell, in Myeloma and Induced Apoptosis in Dose-Dependant Manner, Blood, 116, 5029 (2010); https://doi.org/10.1182/blood.V116.21.5029.5029
  17. J.P. Abraham, I.H. Joe, V. George, O.F. Nielsen and V.S. Jayakumar, Vibrational Spectroscopic Studies on the Natural Product, Columbianadin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 193 (2003); https://doi.org/10.1016/S1386-1425(02)00148-8
  18. Y. Erdogdu, O. Unsalan and M.T. Gulluoglu, Vibrational Analysis of Flavone, Turk. J. Phys., 33, 249 (2009).
  19. D. Milenkovic, J.M.D. Markovic, D. Dimic, S. Jeremic, D. Amic, M.S. Pirkovic, Z.S. Markovic, Structural Characterization of Kaempferol: A Spectroscopic and Computational Study, Maced. J. Chem. Chem. Eng., 38, 49 (2019); https://doi.org/10.20450/mjcce.2019.1333
  20. A.M. Mendoza-Wilson and D. Glossman-Mitnik, CHIH-DFT Deter-mination of the Molecular Structure, Infrared and Ultraviolet Spectra of the Flavonoid Quercetin, J. Mol. Struct. (Theochem.), 681, 71 (2004); https://doi.org/10.1016/j.theochem.2004.04.054
  21. G. Mariappan, N. Sundaraganesan and S. Manoharan, The Spectroscopic Properties of Anticancer Drug Apigenin Investigated by using DFT Calculations, FT-IR, FT-Raman and NMR Analysis, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 86 (2012); https://doi.org/10.1016/j.saa.2012.04.089
  22. N. Sundaraganesan, G. Mariappan and S. Manoharan, Molecular Structure and Vibrational Spectroscopic Studies of Chrysin using HF and Density Functional Theory, Spectrochim. Acta A Mol. Biomol. Spectrosc., 87, 67 (2011); https://doi.org/10.1016/j.saa.2011.11.011
  23. J.P. Cornard, L. Vrielynck, J.C. Merlin and J.C. Wallet, Structural and Vibrational Study of 3-Hydroxyflavone and 3-Methoxyflavone, Spectrochim. Acta A Mol. Biomol. Spectrosc., 51, 913 (1995); https://doi.org/10.1016/0584-8539(94)01425-G
  24. F.P. Guengerich, Z.L. Wu and C.J. Bartleson, Function of Human Cytochrome P450s: Characterization of the Orphans, Biochem. Biophys. Res. Commun., 338, 465 (2005); https://doi.org/10.1016/j.bbrc.2005.08.079
  25. F.P. Guengerich, Cytochrome P450s and Other Enzymes in Drug Metabolism and Toxicity, AAPS J., 8, E101(2006); https://doi.org/10.1208/aapsj080112
  26. V.M. Breinholt, E.A. Offord, C. Brouwer, S.E. Nielsen, K. Brøsend and T. Friedberge, in vitro Investigation of Cytochrome P450-Mediated Metabolism of Dietary Flavonoids, Food Chem Toxicol., 40, 609 (2002); https://doi.org/10.1016/S0278-6915(01)00125-9
  27. T. Shimada, K. Tanaka, S. Takenaka, N. Murayama, M.V. Martin, M.K. Foroozesh, H. Yamazaki, F.P. Guengerich and M. Komori, Structure-Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives, Chem. Res. Toxicol., 23, 1921 (2010); https://doi.org/10.1021/tx100286d
  28. M. Bojic, M. Kondža, H. Rimac, G. Benkovic and Ž. Maleš, The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity, Molecules, 24, 3174. (2019); https://doi.org/10.3390/molecules24173174
  29. J. Sridhar, J. Ellis, P. Dupart, J. Liu, C.L. Stevens and M. Foroozesh, Development of Flavone Propargyl Ethers as Potent and Selective Inhibitors of Cytochrome P450 Enzymes 1A1 and 1A2, Drug Metab. Lett., 6, 275 (2012); https://doi.org/10.2174/1872312811206040007
  30. J. Sridhar, N. Goyal, J. Liu and M. Foroozesh, Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date, Molecules, 22, 1143 (2017); https://doi.org/10.3390/molecules22071143
  31. F. Iori, R. da Fonseca, M.J. Ramos and M.C. Menziani, Theoretical Quantitative Structure-Activity Relationships of Flavone Ligands Interacting with Cytochrome P450 1A1 and 1A2 Isozymes, Bioorg. Med. Chem., 13, 4366 (2005); https://doi.org/10.1016/j.bmc.2005.04.066
  32. R. Santes-Palacios, A. Romo-Mancillas, R. Camacho-Carranza and J.J. Espinosa-Aguirre, Inhibition of Human and Rat CYP1A1 Enzyme by Grapefruit Juice Compounds, Toxicol. Lett., 258, 267 (2016); https://doi.org/10.1016/j.toxlet.2016.07.023
  33. A. G. Indu, Punnagai Munusami, C. S. Vasavi and G. Divya, Molecular Docking Studies on Flavonoid Compounds: An Insight into Aromatase Inhibitors, Int. J. Pharm. Pharm. Sci., 6, 141 (2014)
  34. M.C. Sousa, R. C. Braga, B.A.S. Cintra, V. de Oliveira and C. H. Andrade, in silico Metabolism Studies of Dietary Flavonoids by CYP1A2 and CYP2C9, Food Res. Int., 50, 102 (2013); https://doi.org/10.1016/j.foodres.2012.09.027
  35. H. Takemura, T. Itoh, K. Yamamoto, H. Sakakibara and K. Shimoi, Selective Inhibition of Methoxyflavonoids on Human CYP1B1 Activity, Bioorg. Med. Chem., 18, 6310 (2010); https://doi.org/10.1016/j.bmc.2010.07.020
  36. V. P. Androutsopoulos, A. Papakyriakou, D. Vourloumis and D. A. Spandido, Comparative CYP1A1 and CYP1B1 Substrate and Inhibitor Profile of Dietary Flavonoids, Bioorg. Med. Chem., 19, 2842 (2011); https://doi.org/10.1016/j.bmc.2011.03.042
  37. L. Quintieri, S. Bortolozzo, S. Stragliotto, S. Moro, M. Pavanetto, A. Nassi, P. Palatini and M. Floreani, Flavonoids Diosmetin and Hesperetin are Potent Inhibitors of Cytochrome P450 2C9-Mediated Drug Metabolism in vitro, Drug Metab. Pharmacokin., 25, 466 (2010); https://doi.org/10.2133/dmpk.DMPK-10-RG-044
  38. Pius Fasinu, Y.E. Choonara, R.A. Khan, L.C. Du Toit, P. Kumar, V.M.K. Ndesendo and V. Pillay, Flavonoids and Polymer Derivatives as CYP3A4 Inhibitors for Improved Oral Drug Bioavailability, J Pharm Sci., 102, 541(2013); https://doi.org/10.1002/jps.23382
  39. D.Z. Tu, H.Y. MA, Y.Q. Wang and X.-H Zhao, W.Z. Guo G.B. Ge and L. Yang, Inhibitory Effect of Flavonoids from Scutellariae radix on Human Cytochrome P450 1A, China J. Chinese Mater. Med., 44, 566 (2019); https://doi.org/10.19540/j.cnki.cjcmm.20181128.005-en
  40. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 09, Revision A.02 Gaussian Inc Wallingford CT (2016).
  41. R. Huey and G.M. Morris, Using AutoDock 4 with AutoDocktools: A Tutorial, The Scripps Research Institute, Molecular Graphics Labo-ratory, La Jolla, CA, USA (2008).
  42. Z.Y. Chen, P.T. Chan, K.Y. Ho, K.P. Fung and J. Wang, Antioxidant Activity of Natural Flavonoids is Governed by Number and Location of their Aromatic Hydroxyl Groups, Chem. Phys. Lipids, 79, 157 (1996); https://doi.org/10.1016/0009-3084(96)02523-6
  43. D. Amic, D. Davidovic-Amic, D. Beslo, V. Rastija, B. Lucic and N. Trinajstic, SAR and QSAR of the Antioxidant Activity of Flavonoids, Curr. Med. Chem., 14, 827 (2007); https://doi.org/10.2174/092986707780090954
  44. I.M. Ross, F.L. Rickles and A. W. Halpin, The Crystal and Molecular Structure of Quercetin: A Biologically Active and Naturally Occurring Flavonoid, Bioorg. Chem., 14, 55 (1986); https://doi.org/10.1016/0045-2068(86)90018-0
  45. M.L. Martinez and S.L. Studer and P.T. Chou, Direct Evidence of the Excited-State Intramolecular Proton Transfer in 5-Hydroxyflavone, J. Am. Chem. Soc., 113, 5881 (1991); https://doi.org/10.1021/ja00015a063
  46. E. Falkovskaia, P.K. Sengupta and M. Kasha, Photophysical Induction of Dual Fluorescence of Quercetin and Related Hydroxyflavones Upon Intermolecular H-Bonding to Solvent Matrix, Chem. Phys Lett., 297, 109 (1998); https://doi.org/10.1016/S0009-2614(98)01112-9
  47. H.B. Liu, Y. Daun, S.C. Shin, H.R. Park, J.K. Park and K.-M. Bark, Spectroscopic Properties of Quercetin Derivatives, Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside, in Hydro-organic Mixed Solvents, Photochem. Photobiol., 85, 934 (2009); https://doi.org/10.1111/j.1751-1097.2009.00550.x
  48. G.Z. Jin, Y. Yamagata and K. Tomita, Structure of Quercetin Dihydrate, Acta Cryst., C46, 310 (1990); https://doi.org/10.1107/S0108270189006682
  49. H. Angamuthu and M. Ramachandrane, Investigations on the Structural, Vibrational, Computational and Molecular Docking Studies on the Potential Antidiabetic Chemical Agent Diosmetin, J. Mol. Recognit., 33, e2819 (2020); https://doi.org/10.1002/jmr.2819
  50. N.B. Neilson and A.J. Holder, GAUSS VIEW 5.0, User’s Reference, Gaussian Inc., Pittsburgh, CT (2009).
  51. M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Computer Program, Poland, p. 174 (2004).
  52. H.O. Kalinowski, S. Berger and S. Brawn, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Chichester (1988).
  53. K. Pihlaja, E. Kleinpeter, Carbon13 Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers, Deereld Beach, FL (1994).
  54. K. Fukui, Theory of Orientation and Stereo Selection, Springer-Verlag, Berlin (1975).
  55. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York (1976).
  56. J.P. Cornard, L. Dangleterre and C. Lapouge, Computational and Spectroscopic Characterization of the Molecular and Electronic Structure of the Pb(II)-Quercetin Complex, J. Phys. Chem. A, 109, 10044 (2005); https://doi.org/10.1021/jp053506i
  57. D.R. Telange, A.T. Patil, A. Tatode and B. Bhoyar, Development and Validation of UV Spectrophotometric Method for the Estimation of Kaempferol in Kaempferol: Hydrogenated Soy PhosphatidylCholine (HSPC) Complex, Pharm. Methods, 5, 34 (2014); https://doi.org/10.5530/phm.2014.1.6
  58. E. Scrocco and J. Tomasi, Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials, Adv. Quant. Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1
  59. F.J. Luque, J.M. Lopez and M. Orozco, Perspective on Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects, Theor Chem Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013
  60. B.J. McConkey, V. Sobolev and M. Edelman, The Performance of Current Methods in Ligand-Protein Docking, Curr. Sci., 83, 845 (2002); https://doi.org/10.2307/24107087
  61. http://www.rcsb.org/pdb
  62. L. Quintieri, P. Palatini, S. Moro and M. Floreani, Inhibition of Cytochrome P450 2C8-mediated Drug Metabolism by the Flavonoid Diosmetin, Drug Metab. Pharmacokin., 26, 559 (2011); https://doi.org/10.2133/dmpk.DMPK-11-RG-048
  63. M. Ridderstrom, I. Zamora, O. Fjellström and T.B. Andersson, Analysis of Selective Regions in the Active Sites of Human Cytochromes P450, 2C8, 2C9, 2C18, and 2C19 Homology Models Using GRID/CPCA, J. Med. Chem., 44, 4072 (2001); https://doi.org/10.1021/jm0109107
  64. S. Rendic and F.J. Di Carlo, Human Cytochrome P450 Enzymes: A Status Report Summarizing their Reactions, Substrates, Inducers and Inhibitors, Drug Metab. Rev., 29, 413 (1997); https://doi.org/10.3109/03602539709037591
  65. R.A. Totah and A.E. Rettie, Cytochrome P450 2C8: Substrates, Inhibitors, Pharmacogenetics and Clinical Relevance, Clin. Pharmacol. Ther., 77, 341 (2005); https://doi.org/10.1016/j.clpt.2004.12.267