Main Article Content
Abstract
The novel β-coronavirus (SARS-CoV-2) causes coronavirus disease (COVID-19), which is presently a pandemic affecting numerous nations worldwide including a grim fatality of over 9 lakhs deaths till August, 2020. But even after the 9 months of the outbreak of this deadly disease, there is no particular medication or vaccine so far that can be recommended for the treatment of COVID-19 patients. Therefore, chemists are struggling to understand and dissect the viral structure of this SARS-CoV-2, unwind its pathogenesis and pinpoint its vaccines and therapies as well. In this current study, the author endeavor to sum up the ongoing advances of chemical sciences about COVID-19 focusing mainly on the developments of its therapeutics.
Keywords
Article Details
References
- B.W.Neuman, G. Kiss, A.H. Kunding, D. Bhella, M.F. Baksh, S. Connelly, B. Droese, J.P. Klaus, S. Makino, S.G. Sawicki, S. G. Siddell, D.G. Stamoud, I.A. Wilson, P. Kuhn and M.J. Buchmeierg, A Structural Analysis of M Protein in Coronavirus Assembly and Morphology, J. Struct. Biol., 174, 11 (2011); https://doi.org/10.1016/j.jsb.2010.11.021
- Y. Yin and R.G. Wunderink, MERS, SARS and other Coronavirus as Causes of Pneumonia, Respirology, 23, 130 (2018); https://doi.org/10.1111/resp.13196
- J. Xu, S. Zhao, T. Teng, A.E. Abdalla, W. Zhu, L. Xie, Y. Wang and X. Guo, Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses, 12, 244 (2020); https://doi.org/10.3390/v12020244
- N. Petrosillo, G. Viceconte, O. Ergonul, G. Ippolito and E. Petersen, COVID-19, SARS and MERS: Are They Closely Related? Clin. Microbiol. Infect., 26, 729 (2020); https://doi.org/10.1016/j.cmi.2020.03.026
- B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah and E. Decroly, The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-Like Cleavage Site Absent in CoV of the Same Clade, Antiviral Res., 176, 104742 (2020); https://doi.org/10.1016/j.antiviral.2020.104742
- M. Zheng, Y. Gao, G. Wang, G. Song, S. Liu, D. Sun, Y. Xu and Z. Tian, Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients, Cell. Mol. Immunol., 17, 533 (2020); https://doi.org/10.1038/s41423-020-0402-2
- X.C. Cao, Q.X. Deng and S.X. Dai, Remdesivir for Severe Acute Respiratory Syndrome Coronavirus 2 causing COVID-19: An Evaluation of the Evidence, Travel Med. Infect. Dis, 35, 101647 (2020); https://doi.org/10.1016/j.tmaid.2020.101647
- M.L. Holshue, C. DeBolt, S. Lindquist, K.H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L.A. Fox, A. Patel, S.I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M.A. Pallansch, W.C. Weldon, H.M. Biggs, T.M. Uyeki and S.K. Pillai, First Case of 2019 Novel Coronavirus in the United States, N. Engl. J. Med., 382, 929 (2020); https://doi.org/10.1056/NEJMoa2001191
- P. Colson, J.-M. Rolain, J.-C. Lagier, P. Brouqui and D. Raoult, Chloroquine and Hydroxychloroquine as Available Weapons to Fight COVID-19, Int. J. Antimicrob. Agents; 55, 105932 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105932
- J.-M. Rolain, P. Colson and D. Raoult, Recycling of Chloroquine and its Hydroxyl Analogue to Face Bacterial, Fungal and Viral Infections in the 21st Century, Int. J. Antimicrob. Agents, 30, 297 (2007); https://doi.org/10.1016/j.ijantimicag.2007.05.015
- A. Savarino, J.R. Boelaert, A. Cassone, G. Majori and R. Cauda, Effect of Chloroquine on Viral Infections: An Old Drug Against Today's Diseases, Lancet Infect. Dis., 3, 722 (2003); https://doi.org/10.1016/S1473-3099(03)00806-5
- E. Keyaerts, L. Vijgen, P. Maes, J. Neyts and M.V. Ranst, in vitro Inhibition of Severe Acute Respiratory Syndrome Coronavirus by Chloroquine, Biochem. Biophys. Res. Commun., 323, 264 (2004); https://doi.org/10.1016/j.bbrc.2004.08.085
- J. Gao, Z. Tian and X. Yang, Chloroquine Phosphate has shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies, BioSci. Trends, 14, 72 (2020); https://doi.org/10.5582/bst.2020.01047
- C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult, New Insights on the Antiviral Effects of Chloroquine against Coronavirus: What to Expect for COVID-19? Int. J. Antimicrob. Agents; 55, 105938 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105938
- X. Sun, S. Li, K. Li and X. Hu, Pharmaceutical Care of Chloroquine Phosphate in Elderly Patients with Coronavirus Pneumonia (COVID-19), Aging Medicine, 3, 98 (2020); https://doi.org/10.1002/agm2.12104
- J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Hydroxychloroquine, A Less Toxic Derivative of Chloroquine, is Effective in Inhibiting SARS-CoV-2 Infection in vitro, Cell Discov., 6, 16 (2020); https://doi.org/10.1038/s41421-020-0156-0
- J. Lenzer, Covid-19: US Gives Emergency Approval to Hydroxy-chloroquine Despite Lack of Evidence, BMJ, 369, m1335 (2020); https://doi.org/10.1136/bmj.m1335
- X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, X. Liu, L. Zhao, E. Dong, C. Song, S. Zhan, R. Lu, H. Li, W. Tan and D. Liu, in vitro Anti-viral Activity and Projection of Optimized Dosing Design of Hydroxy-chloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 71, 732 (2020); https://doi.org/10.1093/cid/ciaa237
- Guangdong Provincial Department of Science & Technology and Guangdong Provincial Health & Health Commission Chloroquine Phosphate Treatment of New Coronavirus Pneumonia Multi-Center Collaboration Group, Expert Consensus on Chloroquine Phosphate Treatment of New Coronavirus Pneumonia, Chinese J. Tubercul. Respir, 43, 185 (2020); https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.009
- M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong and G. Xiao, Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in vitro, Cell Res., 30, 269 (2020); https://doi.org/10.1038/s41422-020-0282-0
- C. Harrison, Coronavirus Puts Drug Repurposing on the Fast Track, Nat. Biotechnol., 38, 379 (2020); https://doi.org/10.1038/d41587-020-00003-1
- J.D. Graci and C.E. Cameron, Mechanisms of Action of Ribavirin Against Distinct Viruses, Rev. Med. Virol., 16, 37 (2006); https://doi.org/10.1002/rmv.483
- C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China, Lancet, 395, 497 (2020); https://doi.org/10.1016/S0140-6736(20)30183-5
- J.S. Khalili, H. Zhu, N.S.A. Mak, Y. Yan and Y. Zhu, Novel Coronavirus Treatment with Ribavirin: Groundwork for an Evaluation Concerning COVID-19, J. Med. Virol., 92, 740 (2020); https://doi.org/10.1002/jmv.25798
- Z.F. Yang, L.P. Bai, W. Huang, X.Z. Li, S.S. Zhao, N.S. Zhong and Z.H. Jiang, Comparison of in vitro Antiviral Activity of Tea Polyphenols Against Influenza A and B Viruses and Structure-Activity Relationship Analysis, Fitoterapia, 93, 47 (2014); https://doi.org/10.1016/j.fitote.2013.12.011
- P. Chowdhury, M.E. Sahuc, Y. Rouillé, C. Rivière, N. Bonneau, A. Vandeputte, P. Brodin, M. Goswami, T. Bandyopadhyay, J. Dubuisson and K. Séron, Theaflavins, Polyphenols of Black Tea, Inhibit Entry of Hepatitis C Virus in Cell Culture, PLoS One, 13, e0198226 (2018); https://doi.org/10.1371/journal.pone.0198226
- J. Lung, Y.-S. Lin, Y.-H. Yang, Y.-L. Chou, L.-H. Shu, Y.-C. Cheng, H.T. Liu and C.-Y. Wu, The Potential Chemical Structure of Anti-SARS-CoV-2 RNA-Dependent RNA Polymerase, J. Med. Virol., 92, 693 (2020); https://doi.org/10.1002/jmv.25761
- F.J. Warner, A.I. Smith, N.M. Hooper and A.J. Turner, What’s New in the Renin-Angiotensin System?, Cell. Mol. Life Sci., 61, 2704 (2004); https://doi.org/10.1007/s00018-004-4240-7
- H. Cheng, Y. Wang and G.-Q. Wang, Organ-Protective Effect of Angiotensin-Converting Enzyme 2 and its Effect on the Prognosis of COVID-19, J. Med. Virol., 15, (2020); https://doi.org/10.1002/jmv.25785
- Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma and W. Zuo, Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2, Am. J. Respir. Crit. Care Med., 202, (2020); https://doi.org/10.1164/rccm.202001-0179LE
- P. Sun, X. Lu, C. Xu, Y. Wang, W. Sun and J. Xi, CD-sACE2 Inclusion Compounds: An Effective Treatment for Coronavirus Disease 2019 (COVID-19), J. Med. Virol., 92, 1721 (2020); https://doi.org/10.1002/jmv.25804
- Y. Han and P. Král, Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2, ACS Nano, 14, 5143 (2020); https://doi.org/10.1021/acsnano.0c02857
- World Health Organization. World Health Organization Model List of Essential Medicines, 21st List (2019).
- C.-C. Wen, Y.-H. Kuo, J.-T. Jan, P.-H. Liang, S.-Y. Wang, H.-G. Liu, C.-K. Lee, S.-T. Chang, C.-J. Kuo, S.-S. Lee, C.-C. Hou, P.-W. Hsiao, S.-C. Chien, L.-F. Shyur and N.-S. Yang, Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus, J. Med. Chem., 50, 4087 (2007); https://doi.org/10.1021/jm070295s
- N.C. Gassen, D. Niemeyer, D. Muth, V.M. Corman, S. Martinelli, A. Gassen, K. Hafner, J. Papies, K. Mosbauer, A. Zellner, A.S. Zannas, A. Herrmann, F. Holsboer, R. Brack-Werner, M. Boshart, B. Muller-Myhsok, C. Drosten, M.A. Muller and T. Rein, SKP2 Attenuates Autophagy through Beclin1-Ubiquitination and its Inhibition Reduces MERS-Coronavirus Infection, Nat. Commun., 10, 5770 (2019); https://doi.org/10.1038/s41467-019-13659-4
- P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin, Nature, 579, 270 (2020); https://doi.org/10.1038/s41586-020-2012-7
- J. Xu, P.-Y. Shi, H. Li and J. Zhou, Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential, ACS Infect. Dis., 6, 909 (2020); https://doi.org/10.1021/acsinfecdis.0c00052
- C.M. Chu, V.C.C. Cheng, I.F.N. Hung, M.M.L. Wong, K.H. Chan, K.S. Chan, R.Y.T. Kao, L.L.M. Poon, C.L.P. Wong, Y. Guan, J.S.M. Peiris and K.Y. Yuen, Role of lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings, Thorax, 59, 252 (2004); https://doi.org/10.1136/thorax.2003.012658
- V. Nukoolkarn, V.S. Lee, M. Malaisree, O. Aruksakulwong and S. Hannongbua, Molecular Dynamic Simulations Analysis of Ritronavir and Lopinavir as SARS-CoV 3CLpro Inhibitors, J. Theor. Biol., 254, 861 (2008); https://doi.org/10.1016/j.jtbi.2008.07.030
- S.S. Kaplan and C.B. Hicks, Lopinavir/Ritonavir in the Treatment of Human Immunodeficiency Virus Infection, Expert Opin. Pharmacother., 6, 1573 (2005); https://doi.org/10.1517/14656566.6.9.1573
- B. Nutho, P. Mahalapbutr, K. Hengphasatporn, N.C. Pattaranggoon, N. Simanon, Y. Shigeta, S. Hannongbua and T. Rungrotmongkol, Why are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms, Biochemistry, 59, 1769 (2020); https://doi.org/10.1021/acs.biochem.0c00160
- J.B. Moore and C.H. June, Cytokine Release Syndrome in Severe COVID-19, Science, 368, 473 (2020); https://doi.org/10.1126/science.abb8925
- P. Toniati, S. Piva, M. Cattalini, E. Garrafa, F. Regola, F. Castelli, F. Franceschini, P. Airò, C. Bazzani, E.-A. Beindorf, M. Berlendis, M. Bezzi, N. Bossini, M. Castellanoe, S. Cattaneo, I. Cavazzana, G.-B. Contessi, M. Crippa, A. Delbarba, E.D. Peri, A. Faletti, M. Filippini, M. Filippini, M. Frassi, M. Gaggiotti, R. Gorla, M. Lanspa, S. Lorenzotti, R. Marino, R. Maroldi, M. Metra, A. Matteelli, D. Modina, G. Moioli, G. Montani, M.-L. Muiesan, S. Odolini, E. Peli, S. Pesenti, M.-C. Pezzoli, I. Pirola, A. Pozzi, A. Proto, F.-A. Rasulo, G. Renisi, C. Ricci, D. Rizzoni, G. Romanelli, M. Rossi, M. Salvetti, F. Scolari, L. Signorini, M. Taglietti, G. Tomasoni, L.-R. Tomasoni, F. Turla, A. Valsecchi, D. Zani, F. Zuccalà, F. Zunica, E. Focà, L. Andreoli and N. Latronico, Tocilizumab for the Treatment of Severe COVID-19 Pneumonia with Hyperinflammatory Syndrome and Acute Respiratory Failure: A Single Center Study of 100 Patients in Brescia, Italy, Autoimmun. Rev., 19, 102658 (2020); https://doi.org/10.1016/j.autrev.2020.102568
- S.K. Alzghari and V.S. Acuña Supportive Treatment with Tocilizumab for COVID-19: A Systematic Review, J. Clin. Virol., 127, 104380 (2020); https://doi.org/10.1016/j.jcv.2020.104380
- R. Alattar, T.B.H. Ibrahim, S.H. Shaar, S. Abdalla, K. Shukri, J.N. Daghfal, M.Y. Khatib, M. Aboukamar, M. Abukhattab, H.A. Alsoub, M.A. Almaslamani and A.S. Omrani, Tocilizumab for the Treatment of Severe Coronavirus Disease 2019, J. Med. Virol., 92, 2042 (2020); https://doi.org/10.1002/jmv.25964
- X. Xu, M. Han, T. Li, W. Sun, D. Wang, B. Fu, Y. Zhou, X. Zheng, Y. Yang, X. Li, X. Zhang, A. Pan and H. Wei, Effective Treatment of Severe COVID-19 Patients with Rocilizumab, Proc. Natl. Acad. Sci. USA, 117, 10970 (2020); https://doi.org/10.1073/pnas.2005615117
- S. Zhang, L. Li, A. Shen, Y. Chen and Z. Qi, Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia, Clin. Drug Investig., 40, 511 (2020); https://doi.org/10.1007/s40261-020-00917-3
- Y. Zhang, Y. Zhong, L. Pan and J. Dong. Treat 2019 Novel Coronavirus (COVID-19) with IL-6 inhibitor: Are We Already that Far, Drug Discov. Ther., 14, 100 (2020); https://doi.org/10.5582/ddt.2020.03006
- T.M. Abd El-Aziz and J.D. Stockand, Recent Progress and Challenges in Drug Development Against COVID-19 Coronavirus (SARS-CoV-2): An Update on the Status, Infect. Genet. Evol., 83, 104327 (2020); https://doi.org/10.1016/j.meegid.2020.104327
- S. Kang, W. Peng, Y. Zhu, S. Lu, M. Zhou, W. Lin, W. Wu, S. Huang, L. Jiang, X. Luo and M. Deng, Recent Progress in Understanding 2019 Novel Coronavirus (SARS-CoV-2) Associated with Human Respiratory Disease: Detection, Mechanisms and Treatment, Int. J. Antimicrob. Agents, 55, 105950 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105950
- A.K. Ghosh, M. Brindisi, D. Shahabi and M.E. Chapman, Drug Develop-ment and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics, ChemMedChem, 15, 907 (2020); https://doi.org/10.1002/cmdc.202000223
- M.T. Islam, C. Sarkar, D.M. El-kersh, S. Jamaddar, S.J. Uddin, J.A. Shilpi and M.S. Mubarak, Natural Products and their Derivatives Against Coronavirus: A Review of the Non-clinical and Pre-clinical Data, Phytother. Res., (2020); https://doi.org/10.1002/ptr.6700
- T. Opatz, J. SennBilfinger and C. Richert, Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2: A Short Note on Hand Sanitizers, Drug Candidates and Outreach, Angew. Chem. Int. Ed., 59, 9236 (2020); https://doi.org/10.1002/anie.202004721
- W.C.W. Chan, Nano Research for COVID-19, ACS Nano, 14, 3719 (2020); https://doi.org/10.1021/acsnano.0c02540
- C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey and D. Albaiu, Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci., 6, 315 (2020); https://doi.org/10.1021/acscentsci.0c00272
- Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800, http://ir.inovio.com/news-and-media/news/pressrelease-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx
- GlaxoSmithKline press release on 2/24/20. https://www.gsk.com/en-gb/media/press-releases/clover-and-gsk-announce-researchcollaboration-to-evaluate-coronavirus-covid-19-vaccine-candidatewith-pandemic-adjuvant-system
- Generex press release on 2/27/20. https://storage.googleapis.com/wzukusers/user-26831283/documents/5e57ed391b286sVf68Kq/PR_Generex_Coronavirus_Update_2_27_ 2020.pdf
- Novavax press release on 2/26/20. http://ir.novavax.com/news-releases/news-release-details/novavax-advances-developmentnovel-covid-19-vaccine.
- M. Bhattacharya, A.R. Sharma, P. Patra, P. Ghosh, G. Sharma, B.C. Patra, S.-S. Lee and C. Chakraborty, Development of Epitope-Based Peptide Vaccine Against Novel Coronavirus 2019 (SARS-COV-2): Immunoinformatics Approach, J. Med. Virol., 92, 618 (2020); https://doi.org/10.1002/jmv.25736
- B. Robson, Computers and Viral Diseases. Preliminary Bioinformatics Studies on the Design of a Synthetic Vaccine and a Preventative Peptido-mimetic Antagonist Against The SARS-CoV-2 (2019-nCoV, Covid-19) Coronavirus, Comput. Biol. Med., 119, 103670 (2020); https://doi.org/10.1016/j.compbiomed.2020.103670
- R.J. Malonis, J.R. Lai and O. Vergnolle, Peptide-Based Vaccines: Current Progress and Future Challenges, Chem. Rev., 120, 3210 (2020); https://doi.org/10.1021/acs.chemrev.9b00472
- Moderna press release on 2/24/2020 https://investors.modernatx.com/news-releases/news-release-details/moderna-shipsmrna-vaccine-against-novel-coronavirus-mrna-1273
References
B.W.Neuman, G. Kiss, A.H. Kunding, D. Bhella, M.F. Baksh, S. Connelly, B. Droese, J.P. Klaus, S. Makino, S.G. Sawicki, S. G. Siddell, D.G. Stamoud, I.A. Wilson, P. Kuhn and M.J. Buchmeierg, A Structural Analysis of M Protein in Coronavirus Assembly and Morphology, J. Struct. Biol., 174, 11 (2011); https://doi.org/10.1016/j.jsb.2010.11.021
Y. Yin and R.G. Wunderink, MERS, SARS and other Coronavirus as Causes of Pneumonia, Respirology, 23, 130 (2018); https://doi.org/10.1111/resp.13196
J. Xu, S. Zhao, T. Teng, A.E. Abdalla, W. Zhu, L. Xie, Y. Wang and X. Guo, Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses, 12, 244 (2020); https://doi.org/10.3390/v12020244
N. Petrosillo, G. Viceconte, O. Ergonul, G. Ippolito and E. Petersen, COVID-19, SARS and MERS: Are They Closely Related? Clin. Microbiol. Infect., 26, 729 (2020); https://doi.org/10.1016/j.cmi.2020.03.026
B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah and E. Decroly, The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-Like Cleavage Site Absent in CoV of the Same Clade, Antiviral Res., 176, 104742 (2020); https://doi.org/10.1016/j.antiviral.2020.104742
M. Zheng, Y. Gao, G. Wang, G. Song, S. Liu, D. Sun, Y. Xu and Z. Tian, Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients, Cell. Mol. Immunol., 17, 533 (2020); https://doi.org/10.1038/s41423-020-0402-2
X.C. Cao, Q.X. Deng and S.X. Dai, Remdesivir for Severe Acute Respiratory Syndrome Coronavirus 2 causing COVID-19: An Evaluation of the Evidence, Travel Med. Infect. Dis, 35, 101647 (2020); https://doi.org/10.1016/j.tmaid.2020.101647
M.L. Holshue, C. DeBolt, S. Lindquist, K.H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L.A. Fox, A. Patel, S.I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M.A. Pallansch, W.C. Weldon, H.M. Biggs, T.M. Uyeki and S.K. Pillai, First Case of 2019 Novel Coronavirus in the United States, N. Engl. J. Med., 382, 929 (2020); https://doi.org/10.1056/NEJMoa2001191
P. Colson, J.-M. Rolain, J.-C. Lagier, P. Brouqui and D. Raoult, Chloroquine and Hydroxychloroquine as Available Weapons to Fight COVID-19, Int. J. Antimicrob. Agents; 55, 105932 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105932
J.-M. Rolain, P. Colson and D. Raoult, Recycling of Chloroquine and its Hydroxyl Analogue to Face Bacterial, Fungal and Viral Infections in the 21st Century, Int. J. Antimicrob. Agents, 30, 297 (2007); https://doi.org/10.1016/j.ijantimicag.2007.05.015
A. Savarino, J.R. Boelaert, A. Cassone, G. Majori and R. Cauda, Effect of Chloroquine on Viral Infections: An Old Drug Against Today's Diseases, Lancet Infect. Dis., 3, 722 (2003); https://doi.org/10.1016/S1473-3099(03)00806-5
E. Keyaerts, L. Vijgen, P. Maes, J. Neyts and M.V. Ranst, in vitro Inhibition of Severe Acute Respiratory Syndrome Coronavirus by Chloroquine, Biochem. Biophys. Res. Commun., 323, 264 (2004); https://doi.org/10.1016/j.bbrc.2004.08.085
J. Gao, Z. Tian and X. Yang, Chloroquine Phosphate has shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies, BioSci. Trends, 14, 72 (2020); https://doi.org/10.5582/bst.2020.01047
C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult, New Insights on the Antiviral Effects of Chloroquine against Coronavirus: What to Expect for COVID-19? Int. J. Antimicrob. Agents; 55, 105938 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105938
X. Sun, S. Li, K. Li and X. Hu, Pharmaceutical Care of Chloroquine Phosphate in Elderly Patients with Coronavirus Pneumonia (COVID-19), Aging Medicine, 3, 98 (2020); https://doi.org/10.1002/agm2.12104
J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Hydroxychloroquine, A Less Toxic Derivative of Chloroquine, is Effective in Inhibiting SARS-CoV-2 Infection in vitro, Cell Discov., 6, 16 (2020); https://doi.org/10.1038/s41421-020-0156-0
J. Lenzer, Covid-19: US Gives Emergency Approval to Hydroxy-chloroquine Despite Lack of Evidence, BMJ, 369, m1335 (2020); https://doi.org/10.1136/bmj.m1335
X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, X. Liu, L. Zhao, E. Dong, C. Song, S. Zhan, R. Lu, H. Li, W. Tan and D. Liu, in vitro Anti-viral Activity and Projection of Optimized Dosing Design of Hydroxy-chloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 71, 732 (2020); https://doi.org/10.1093/cid/ciaa237
Guangdong Provincial Department of Science & Technology and Guangdong Provincial Health & Health Commission Chloroquine Phosphate Treatment of New Coronavirus Pneumonia Multi-Center Collaboration Group, Expert Consensus on Chloroquine Phosphate Treatment of New Coronavirus Pneumonia, Chinese J. Tubercul. Respir, 43, 185 (2020); https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.009
M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong and G. Xiao, Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in vitro, Cell Res., 30, 269 (2020); https://doi.org/10.1038/s41422-020-0282-0
C. Harrison, Coronavirus Puts Drug Repurposing on the Fast Track, Nat. Biotechnol., 38, 379 (2020); https://doi.org/10.1038/d41587-020-00003-1
J.D. Graci and C.E. Cameron, Mechanisms of Action of Ribavirin Against Distinct Viruses, Rev. Med. Virol., 16, 37 (2006); https://doi.org/10.1002/rmv.483
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China, Lancet, 395, 497 (2020); https://doi.org/10.1016/S0140-6736(20)30183-5
J.S. Khalili, H. Zhu, N.S.A. Mak, Y. Yan and Y. Zhu, Novel Coronavirus Treatment with Ribavirin: Groundwork for an Evaluation Concerning COVID-19, J. Med. Virol., 92, 740 (2020); https://doi.org/10.1002/jmv.25798
Z.F. Yang, L.P. Bai, W. Huang, X.Z. Li, S.S. Zhao, N.S. Zhong and Z.H. Jiang, Comparison of in vitro Antiviral Activity of Tea Polyphenols Against Influenza A and B Viruses and Structure-Activity Relationship Analysis, Fitoterapia, 93, 47 (2014); https://doi.org/10.1016/j.fitote.2013.12.011
P. Chowdhury, M.E. Sahuc, Y. Rouillé, C. Rivière, N. Bonneau, A. Vandeputte, P. Brodin, M. Goswami, T. Bandyopadhyay, J. Dubuisson and K. Séron, Theaflavins, Polyphenols of Black Tea, Inhibit Entry of Hepatitis C Virus in Cell Culture, PLoS One, 13, e0198226 (2018); https://doi.org/10.1371/journal.pone.0198226
J. Lung, Y.-S. Lin, Y.-H. Yang, Y.-L. Chou, L.-H. Shu, Y.-C. Cheng, H.T. Liu and C.-Y. Wu, The Potential Chemical Structure of Anti-SARS-CoV-2 RNA-Dependent RNA Polymerase, J. Med. Virol., 92, 693 (2020); https://doi.org/10.1002/jmv.25761
F.J. Warner, A.I. Smith, N.M. Hooper and A.J. Turner, What’s New in the Renin-Angiotensin System?, Cell. Mol. Life Sci., 61, 2704 (2004); https://doi.org/10.1007/s00018-004-4240-7
H. Cheng, Y. Wang and G.-Q. Wang, Organ-Protective Effect of Angiotensin-Converting Enzyme 2 and its Effect on the Prognosis of COVID-19, J. Med. Virol., 15, (2020); https://doi.org/10.1002/jmv.25785
Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma and W. Zuo, Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2, Am. J. Respir. Crit. Care Med., 202, (2020); https://doi.org/10.1164/rccm.202001-0179LE
P. Sun, X. Lu, C. Xu, Y. Wang, W. Sun and J. Xi, CD-sACE2 Inclusion Compounds: An Effective Treatment for Coronavirus Disease 2019 (COVID-19), J. Med. Virol., 92, 1721 (2020); https://doi.org/10.1002/jmv.25804
Y. Han and P. Král, Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2, ACS Nano, 14, 5143 (2020); https://doi.org/10.1021/acsnano.0c02857
World Health Organization. World Health Organization Model List of Essential Medicines, 21st List (2019).
C.-C. Wen, Y.-H. Kuo, J.-T. Jan, P.-H. Liang, S.-Y. Wang, H.-G. Liu, C.-K. Lee, S.-T. Chang, C.-J. Kuo, S.-S. Lee, C.-C. Hou, P.-W. Hsiao, S.-C. Chien, L.-F. Shyur and N.-S. Yang, Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus, J. Med. Chem., 50, 4087 (2007); https://doi.org/10.1021/jm070295s
N.C. Gassen, D. Niemeyer, D. Muth, V.M. Corman, S. Martinelli, A. Gassen, K. Hafner, J. Papies, K. Mosbauer, A. Zellner, A.S. Zannas, A. Herrmann, F. Holsboer, R. Brack-Werner, M. Boshart, B. Muller-Myhsok, C. Drosten, M.A. Muller and T. Rein, SKP2 Attenuates Autophagy through Beclin1-Ubiquitination and its Inhibition Reduces MERS-Coronavirus Infection, Nat. Commun., 10, 5770 (2019); https://doi.org/10.1038/s41467-019-13659-4
P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin, Nature, 579, 270 (2020); https://doi.org/10.1038/s41586-020-2012-7
J. Xu, P.-Y. Shi, H. Li and J. Zhou, Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential, ACS Infect. Dis., 6, 909 (2020); https://doi.org/10.1021/acsinfecdis.0c00052
C.M. Chu, V.C.C. Cheng, I.F.N. Hung, M.M.L. Wong, K.H. Chan, K.S. Chan, R.Y.T. Kao, L.L.M. Poon, C.L.P. Wong, Y. Guan, J.S.M. Peiris and K.Y. Yuen, Role of lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings, Thorax, 59, 252 (2004); https://doi.org/10.1136/thorax.2003.012658
V. Nukoolkarn, V.S. Lee, M. Malaisree, O. Aruksakulwong and S. Hannongbua, Molecular Dynamic Simulations Analysis of Ritronavir and Lopinavir as SARS-CoV 3CLpro Inhibitors, J. Theor. Biol., 254, 861 (2008); https://doi.org/10.1016/j.jtbi.2008.07.030
S.S. Kaplan and C.B. Hicks, Lopinavir/Ritonavir in the Treatment of Human Immunodeficiency Virus Infection, Expert Opin. Pharmacother., 6, 1573 (2005); https://doi.org/10.1517/14656566.6.9.1573
B. Nutho, P. Mahalapbutr, K. Hengphasatporn, N.C. Pattaranggoon, N. Simanon, Y. Shigeta, S. Hannongbua and T. Rungrotmongkol, Why are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms, Biochemistry, 59, 1769 (2020); https://doi.org/10.1021/acs.biochem.0c00160
J.B. Moore and C.H. June, Cytokine Release Syndrome in Severe COVID-19, Science, 368, 473 (2020); https://doi.org/10.1126/science.abb8925
P. Toniati, S. Piva, M. Cattalini, E. Garrafa, F. Regola, F. Castelli, F. Franceschini, P. Airò, C. Bazzani, E.-A. Beindorf, M. Berlendis, M. Bezzi, N. Bossini, M. Castellanoe, S. Cattaneo, I. Cavazzana, G.-B. Contessi, M. Crippa, A. Delbarba, E.D. Peri, A. Faletti, M. Filippini, M. Filippini, M. Frassi, M. Gaggiotti, R. Gorla, M. Lanspa, S. Lorenzotti, R. Marino, R. Maroldi, M. Metra, A. Matteelli, D. Modina, G. Moioli, G. Montani, M.-L. Muiesan, S. Odolini, E. Peli, S. Pesenti, M.-C. Pezzoli, I. Pirola, A. Pozzi, A. Proto, F.-A. Rasulo, G. Renisi, C. Ricci, D. Rizzoni, G. Romanelli, M. Rossi, M. Salvetti, F. Scolari, L. Signorini, M. Taglietti, G. Tomasoni, L.-R. Tomasoni, F. Turla, A. Valsecchi, D. Zani, F. Zuccalà, F. Zunica, E. Focà, L. Andreoli and N. Latronico, Tocilizumab for the Treatment of Severe COVID-19 Pneumonia with Hyperinflammatory Syndrome and Acute Respiratory Failure: A Single Center Study of 100 Patients in Brescia, Italy, Autoimmun. Rev., 19, 102658 (2020); https://doi.org/10.1016/j.autrev.2020.102568
S.K. Alzghari and V.S. Acuña Supportive Treatment with Tocilizumab for COVID-19: A Systematic Review, J. Clin. Virol., 127, 104380 (2020); https://doi.org/10.1016/j.jcv.2020.104380
R. Alattar, T.B.H. Ibrahim, S.H. Shaar, S. Abdalla, K. Shukri, J.N. Daghfal, M.Y. Khatib, M. Aboukamar, M. Abukhattab, H.A. Alsoub, M.A. Almaslamani and A.S. Omrani, Tocilizumab for the Treatment of Severe Coronavirus Disease 2019, J. Med. Virol., 92, 2042 (2020); https://doi.org/10.1002/jmv.25964
X. Xu, M. Han, T. Li, W. Sun, D. Wang, B. Fu, Y. Zhou, X. Zheng, Y. Yang, X. Li, X. Zhang, A. Pan and H. Wei, Effective Treatment of Severe COVID-19 Patients with Rocilizumab, Proc. Natl. Acad. Sci. USA, 117, 10970 (2020); https://doi.org/10.1073/pnas.2005615117
S. Zhang, L. Li, A. Shen, Y. Chen and Z. Qi, Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia, Clin. Drug Investig., 40, 511 (2020); https://doi.org/10.1007/s40261-020-00917-3
Y. Zhang, Y. Zhong, L. Pan and J. Dong. Treat 2019 Novel Coronavirus (COVID-19) with IL-6 inhibitor: Are We Already that Far, Drug Discov. Ther., 14, 100 (2020); https://doi.org/10.5582/ddt.2020.03006
T.M. Abd El-Aziz and J.D. Stockand, Recent Progress and Challenges in Drug Development Against COVID-19 Coronavirus (SARS-CoV-2): An Update on the Status, Infect. Genet. Evol., 83, 104327 (2020); https://doi.org/10.1016/j.meegid.2020.104327
S. Kang, W. Peng, Y. Zhu, S. Lu, M. Zhou, W. Lin, W. Wu, S. Huang, L. Jiang, X. Luo and M. Deng, Recent Progress in Understanding 2019 Novel Coronavirus (SARS-CoV-2) Associated with Human Respiratory Disease: Detection, Mechanisms and Treatment, Int. J. Antimicrob. Agents, 55, 105950 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105950
A.K. Ghosh, M. Brindisi, D. Shahabi and M.E. Chapman, Drug Develop-ment and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics, ChemMedChem, 15, 907 (2020); https://doi.org/10.1002/cmdc.202000223
M.T. Islam, C. Sarkar, D.M. El-kersh, S. Jamaddar, S.J. Uddin, J.A. Shilpi and M.S. Mubarak, Natural Products and their Derivatives Against Coronavirus: A Review of the Non-clinical and Pre-clinical Data, Phytother. Res., (2020); https://doi.org/10.1002/ptr.6700
T. Opatz, J. SennBilfinger and C. Richert, Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2: A Short Note on Hand Sanitizers, Drug Candidates and Outreach, Angew. Chem. Int. Ed., 59, 9236 (2020); https://doi.org/10.1002/anie.202004721
W.C.W. Chan, Nano Research for COVID-19, ACS Nano, 14, 3719 (2020); https://doi.org/10.1021/acsnano.0c02540
C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey and D. Albaiu, Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci., 6, 315 (2020); https://doi.org/10.1021/acscentsci.0c00272
Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800, http://ir.inovio.com/news-and-media/news/pressrelease-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx
GlaxoSmithKline press release on 2/24/20. https://www.gsk.com/en-gb/media/press-releases/clover-and-gsk-announce-researchcollaboration-to-evaluate-coronavirus-covid-19-vaccine-candidatewith-pandemic-adjuvant-system
Generex press release on 2/27/20. https://storage.googleapis.com/wzukusers/user-26831283/documents/5e57ed391b286sVf68Kq/PR_Generex_Coronavirus_Update_2_27_ 2020.pdf
Novavax press release on 2/26/20. http://ir.novavax.com/news-releases/news-release-details/novavax-advances-developmentnovel-covid-19-vaccine.
M. Bhattacharya, A.R. Sharma, P. Patra, P. Ghosh, G. Sharma, B.C. Patra, S.-S. Lee and C. Chakraborty, Development of Epitope-Based Peptide Vaccine Against Novel Coronavirus 2019 (SARS-COV-2): Immunoinformatics Approach, J. Med. Virol., 92, 618 (2020); https://doi.org/10.1002/jmv.25736
B. Robson, Computers and Viral Diseases. Preliminary Bioinformatics Studies on the Design of a Synthetic Vaccine and a Preventative Peptido-mimetic Antagonist Against The SARS-CoV-2 (2019-nCoV, Covid-19) Coronavirus, Comput. Biol. Med., 119, 103670 (2020); https://doi.org/10.1016/j.compbiomed.2020.103670
R.J. Malonis, J.R. Lai and O. Vergnolle, Peptide-Based Vaccines: Current Progress and Future Challenges, Chem. Rev., 120, 3210 (2020); https://doi.org/10.1021/acs.chemrev.9b00472
Moderna press release on 2/24/2020 https://investors.modernatx.com/news-releases/news-release-details/moderna-shipsmrna-vaccine-against-novel-coronavirus-mrna-1273