Main Article Content

Abstract

The novel β-coronavirus (SARS-CoV-2) causes coronavirus disease (COVID-19), which is presently a pandemic affecting numerous nations worldwide including a grim fatality of over 9 lakhs deaths till August, 2020. But even after the 9 months of the outbreak of this deadly disease, there is no particular medication or vaccine so far that can be recommended for the treatment of COVID-19 patients. Therefore, chemists are struggling to understand and dissect the viral structure of this SARS-CoV-2, unwind its pathogenesis and pinpoint its vaccines and therapies as well. In this current study, the author endeavor to sum up the ongoing advances of chemical sciences about COVID-19 focusing mainly on the developments of its therapeutics.

Keywords

Coronavirus SARS-CoV-2 COVID-19 Drugs Vaccines Therapeutics

Article Details

How to Cite
Mondal, S. (2020). The Chemical Sciences’ Advances on Coronavirus Disease 2019 (COVID-19). Asian Journal of Organic & Medicinal Chemistry, 5(3), 179–184. https://doi.org/10.14233/ajomc.2020.AJOMC-P286

References

  1. B.W.Neuman, G. Kiss, A.H. Kunding, D. Bhella, M.F. Baksh, S. Connelly, B. Droese, J.P. Klaus, S. Makino, S.G. Sawicki, S. G. Siddell, D.G. Stamoud, I.A. Wilson, P. Kuhn and M.J. Buchmeierg, A Structural Analysis of M Protein in Coronavirus Assembly and Morphology, J. Struct. Biol., 174, 11 (2011); https://doi.org/10.1016/j.jsb.2010.11.021
  2. Y. Yin and R.G. Wunderink, MERS, SARS and other Coronavirus as Causes of Pneumonia, Respirology, 23, 130 (2018); https://doi.org/10.1111/resp.13196
  3. J. Xu, S. Zhao, T. Teng, A.E. Abdalla, W. Zhu, L. Xie, Y. Wang and X. Guo, Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses, 12, 244 (2020); https://doi.org/10.3390/v12020244
  4. N. Petrosillo, G. Viceconte, O. Ergonul, G. Ippolito and E. Petersen, COVID-19, SARS and MERS: Are They Closely Related? Clin. Microbiol. Infect., 26, 729 (2020); https://doi.org/10.1016/j.cmi.2020.03.026
  5. B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah and E. Decroly, The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-Like Cleavage Site Absent in CoV of the Same Clade, Antiviral Res., 176, 104742 (2020); https://doi.org/10.1016/j.antiviral.2020.104742
  6. M. Zheng, Y. Gao, G. Wang, G. Song, S. Liu, D. Sun, Y. Xu and Z. Tian, Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients, Cell. Mol. Immunol., 17, 533 (2020); https://doi.org/10.1038/s41423-020-0402-2
  7. X.C. Cao, Q.X. Deng and S.X. Dai, Remdesivir for Severe Acute Respiratory Syndrome Coronavirus 2 causing COVID-19: An Evaluation of the Evidence, Travel Med. Infect. Dis, 35, 101647 (2020); https://doi.org/10.1016/j.tmaid.2020.101647
  8. M.L. Holshue, C. DeBolt, S. Lindquist, K.H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L.A. Fox, A. Patel, S.I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M.A. Pallansch, W.C. Weldon, H.M. Biggs, T.M. Uyeki and S.K. Pillai, First Case of 2019 Novel Coronavirus in the United States, N. Engl. J. Med., 382, 929 (2020); https://doi.org/10.1056/NEJMoa2001191
  9. P. Colson, J.-M. Rolain, J.-C. Lagier, P. Brouqui and D. Raoult, Chloroquine and Hydroxychloroquine as Available Weapons to Fight COVID-19, Int. J. Antimicrob. Agents; 55, 105932 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105932
  10. J.-M. Rolain, P. Colson and D. Raoult, Recycling of Chloroquine and its Hydroxyl Analogue to Face Bacterial, Fungal and Viral Infections in the 21st Century, Int. J. Antimicrob. Agents, 30, 297 (2007); https://doi.org/10.1016/j.ijantimicag.2007.05.015
  11. A. Savarino, J.R. Boelaert, A. Cassone, G. Majori and R. Cauda, Effect of Chloroquine on Viral Infections: An Old Drug Against Today's Diseases, Lancet Infect. Dis., 3, 722 (2003); https://doi.org/10.1016/S1473-3099(03)00806-5
  12. E. Keyaerts, L. Vijgen, P. Maes, J. Neyts and M.V. Ranst, in vitro Inhibition of Severe Acute Respiratory Syndrome Coronavirus by Chloroquine, Biochem. Biophys. Res. Commun., 323, 264 (2004); https://doi.org/10.1016/j.bbrc.2004.08.085
  13. J. Gao, Z. Tian and X. Yang, Chloroquine Phosphate has shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies, BioSci. Trends, 14, 72 (2020); https://doi.org/10.5582/bst.2020.01047
  14. C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult, New Insights on the Antiviral Effects of Chloroquine against Coronavirus: What to Expect for COVID-19? Int. J. Antimicrob. Agents; 55, 105938 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105938
  15. X. Sun, S. Li, K. Li and X. Hu, Pharmaceutical Care of Chloroquine Phosphate in Elderly Patients with Coronavirus Pneumonia (COVID-19), Aging Medicine, 3, 98 (2020); https://doi.org/10.1002/agm2.12104
  16. J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Hydroxychloroquine, A Less Toxic Derivative of Chloroquine, is Effective in Inhibiting SARS-CoV-2 Infection in vitro, Cell Discov., 6, 16 (2020); https://doi.org/10.1038/s41421-020-0156-0
  17. J. Lenzer, Covid-19: US Gives Emergency Approval to Hydroxy-chloroquine Despite Lack of Evidence, BMJ, 369, m1335 (2020); https://doi.org/10.1136/bmj.m1335
  18. X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, X. Liu, L. Zhao, E. Dong, C. Song, S. Zhan, R. Lu, H. Li, W. Tan and D. Liu, in vitro Anti-viral Activity and Projection of Optimized Dosing Design of Hydroxy-chloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., 71, 732 (2020); https://doi.org/10.1093/cid/ciaa237
  19. Guangdong Provincial Department of Science & Technology and Guangdong Provincial Health & Health Commission Chloroquine Phosphate Treatment of New Coronavirus Pneumonia Multi-Center Collaboration Group, Expert Consensus on Chloroquine Phosphate Treatment of New Coronavirus Pneumonia, Chinese J. Tubercul. Respir, 43, 185 (2020); https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.009
  20. M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong and G. Xiao, Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in vitro, Cell Res., 30, 269 (2020); https://doi.org/10.1038/s41422-020-0282-0
  21. C. Harrison, Coronavirus Puts Drug Repurposing on the Fast Track, Nat. Biotechnol., 38, 379 (2020); https://doi.org/10.1038/d41587-020-00003-1
  22. J.D. Graci and C.E. Cameron, Mechanisms of Action of Ribavirin Against Distinct Viruses, Rev. Med. Virol., 16, 37 (2006); https://doi.org/10.1002/rmv.483
  23. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China, Lancet, 395, 497 (2020); https://doi.org/10.1016/S0140-6736(20)30183-5
  24. J.S. Khalili, H. Zhu, N.S.A. Mak, Y. Yan and Y. Zhu, Novel Coronavirus Treatment with Ribavirin: Groundwork for an Evaluation Concerning COVID-19, J. Med. Virol., 92, 740 (2020); https://doi.org/10.1002/jmv.25798
  25. Z.F. Yang, L.P. Bai, W. Huang, X.Z. Li, S.S. Zhao, N.S. Zhong and Z.H. Jiang, Comparison of in vitro Antiviral Activity of Tea Polyphenols Against Influenza A and B Viruses and Structure-Activity Relationship Analysis, Fitoterapia, 93, 47 (2014); https://doi.org/10.1016/j.fitote.2013.12.011
  26. P. Chowdhury, M.E. Sahuc, Y. Rouillé, C. Rivière, N. Bonneau, A. Vandeputte, P. Brodin, M. Goswami, T. Bandyopadhyay, J. Dubuisson and K. Séron, Theaflavins, Polyphenols of Black Tea, Inhibit Entry of Hepatitis C Virus in Cell Culture, PLoS One, 13, e0198226 (2018); https://doi.org/10.1371/journal.pone.0198226
  27. J. Lung, Y.-S. Lin, Y.-H. Yang, Y.-L. Chou, L.-H. Shu, Y.-C. Cheng, H.T. Liu and C.-Y. Wu, The Potential Chemical Structure of Anti-SARS-CoV-2 RNA-Dependent RNA Polymerase, J. Med. Virol., 92, 693 (2020); https://doi.org/10.1002/jmv.25761
  28. F.J. Warner, A.I. Smith, N.M. Hooper and A.J. Turner, What’s New in the Renin-Angiotensin System?, Cell. Mol. Life Sci., 61, 2704 (2004); https://doi.org/10.1007/s00018-004-4240-7
  29. H. Cheng, Y. Wang and G.-Q. Wang, Organ-Protective Effect of Angiotensin-Converting Enzyme 2 and its Effect on the Prognosis of COVID-19, J. Med. Virol., 15, (2020); https://doi.org/10.1002/jmv.25785
  30. Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma and W. Zuo, Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2, Am. J. Respir. Crit. Care Med., 202, (2020); https://doi.org/10.1164/rccm.202001-0179LE
  31. P. Sun, X. Lu, C. Xu, Y. Wang, W. Sun and J. Xi, CD-sACE2 Inclusion Compounds: An Effective Treatment for Coronavirus Disease 2019 (COVID-19), J. Med. Virol., 92, 1721 (2020); https://doi.org/10.1002/jmv.25804
  32. Y. Han and P. Král, Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2, ACS Nano, 14, 5143 (2020); https://doi.org/10.1021/acsnano.0c02857
  33. World Health Organization. World Health Organization Model List of Essential Medicines, 21st List (2019).
  34. C.-C. Wen, Y.-H. Kuo, J.-T. Jan, P.-H. Liang, S.-Y. Wang, H.-G. Liu, C.-K. Lee, S.-T. Chang, C.-J. Kuo, S.-S. Lee, C.-C. Hou, P.-W. Hsiao, S.-C. Chien, L.-F. Shyur and N.-S. Yang, Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus, J. Med. Chem., 50, 4087 (2007); https://doi.org/10.1021/jm070295s
  35. N.C. Gassen, D. Niemeyer, D. Muth, V.M. Corman, S. Martinelli, A. Gassen, K. Hafner, J. Papies, K. Mosbauer, A. Zellner, A.S. Zannas, A. Herrmann, F. Holsboer, R. Brack-Werner, M. Boshart, B. Muller-Myhsok, C. Drosten, M.A. Muller and T. Rein, SKP2 Attenuates Autophagy through Beclin1-Ubiquitination and its Inhibition Reduces MERS-Coronavirus Infection, Nat. Commun., 10, 5770 (2019); https://doi.org/10.1038/s41467-019-13659-4
  36. P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao and Z.-L. Shi, A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin, Nature, 579, 270 (2020); https://doi.org/10.1038/s41586-020-2012-7
  37. J. Xu, P.-Y. Shi, H. Li and J. Zhou, Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential, ACS Infect. Dis., 6, 909 (2020); https://doi.org/10.1021/acsinfecdis.0c00052
  38. C.M. Chu, V.C.C. Cheng, I.F.N. Hung, M.M.L. Wong, K.H. Chan, K.S. Chan, R.Y.T. Kao, L.L.M. Poon, C.L.P. Wong, Y. Guan, J.S.M. Peiris and K.Y. Yuen, Role of lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings, Thorax, 59, 252 (2004); https://doi.org/10.1136/thorax.2003.012658
  39. V. Nukoolkarn, V.S. Lee, M. Malaisree, O. Aruksakulwong and S. Hannongbua, Molecular Dynamic Simulations Analysis of Ritronavir and Lopinavir as SARS-CoV 3CLpro Inhibitors, J. Theor. Biol., 254, 861 (2008); https://doi.org/10.1016/j.jtbi.2008.07.030
  40. S.S. Kaplan and C.B. Hicks, Lopinavir/Ritonavir in the Treatment of Human Immunodeficiency Virus Infection, Expert Opin. Pharmacother., 6, 1573 (2005); https://doi.org/10.1517/14656566.6.9.1573
  41. B. Nutho, P. Mahalapbutr, K. Hengphasatporn, N.C. Pattaranggoon, N. Simanon, Y. Shigeta, S. Hannongbua and T. Rungrotmongkol, Why are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms, Biochemistry, 59, 1769 (2020); https://doi.org/10.1021/acs.biochem.0c00160
  42. J.B. Moore and C.H. June, Cytokine Release Syndrome in Severe COVID-19, Science, 368, 473 (2020); https://doi.org/10.1126/science.abb8925
  43. P. Toniati, S. Piva, M. Cattalini, E. Garrafa, F. Regola, F. Castelli, F. Franceschini, P. Airò, C. Bazzani, E.-A. Beindorf, M. Berlendis, M. Bezzi, N. Bossini, M. Castellanoe, S. Cattaneo, I. Cavazzana, G.-B. Contessi, M. Crippa, A. Delbarba, E.D. Peri, A. Faletti, M. Filippini, M. Filippini, M. Frassi, M. Gaggiotti, R. Gorla, M. Lanspa, S. Lorenzotti, R. Marino, R. Maroldi, M. Metra, A. Matteelli, D. Modina, G. Moioli, G. Montani, M.-L. Muiesan, S. Odolini, E. Peli, S. Pesenti, M.-C. Pezzoli, I. Pirola, A. Pozzi, A. Proto, F.-A. Rasulo, G. Renisi, C. Ricci, D. Rizzoni, G. Romanelli, M. Rossi, M. Salvetti, F. Scolari, L. Signorini, M. Taglietti, G. Tomasoni, L.-R. Tomasoni, F. Turla, A. Valsecchi, D. Zani, F. Zuccalà, F. Zunica, E. Focà, L. Andreoli and N. Latronico, Tocilizumab for the Treatment of Severe COVID-19 Pneumonia with Hyperinflammatory Syndrome and Acute Respiratory Failure: A Single Center Study of 100 Patients in Brescia, Italy, Autoimmun. Rev., 19, 102658 (2020); https://doi.org/10.1016/j.autrev.2020.102568
  44. S.K. Alzghari and V.S. Acuña Supportive Treatment with Tocilizumab for COVID-19: A Systematic Review, J. Clin. Virol., 127, 104380 (2020); https://doi.org/10.1016/j.jcv.2020.104380
  45. R. Alattar, T.B.H. Ibrahim, S.H. Shaar, S. Abdalla, K. Shukri, J.N. Daghfal, M.Y. Khatib, M. Aboukamar, M. Abukhattab, H.A. Alsoub, M.A. Almaslamani and A.S. Omrani, Tocilizumab for the Treatment of Severe Coronavirus Disease 2019, J. Med. Virol., 92, 2042 (2020); https://doi.org/10.1002/jmv.25964
  46. X. Xu, M. Han, T. Li, W. Sun, D. Wang, B. Fu, Y. Zhou, X. Zheng, Y. Yang, X. Li, X. Zhang, A. Pan and H. Wei, Effective Treatment of Severe COVID-19 Patients with Rocilizumab, Proc. Natl. Acad. Sci. USA, 117, 10970 (2020); https://doi.org/10.1073/pnas.2005615117
  47. S. Zhang, L. Li, A. Shen, Y. Chen and Z. Qi, Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia, Clin. Drug Investig., 40, 511 (2020); https://doi.org/10.1007/s40261-020-00917-3
  48. Y. Zhang, Y. Zhong, L. Pan and J. Dong. Treat 2019 Novel Coronavirus (COVID-19) with IL-6 inhibitor: Are We Already that Far, Drug Discov. Ther., 14, 100 (2020); https://doi.org/10.5582/ddt.2020.03006
  49. T.M. Abd El-Aziz and J.D. Stockand, Recent Progress and Challenges in Drug Development Against COVID-19 Coronavirus (SARS-CoV-2): An Update on the Status, Infect. Genet. Evol., 83, 104327 (2020); https://doi.org/10.1016/j.meegid.2020.104327
  50. S. Kang, W. Peng, Y. Zhu, S. Lu, M. Zhou, W. Lin, W. Wu, S. Huang, L. Jiang, X. Luo and M. Deng, Recent Progress in Understanding 2019 Novel Coronavirus (SARS-CoV-2) Associated with Human Respiratory Disease: Detection, Mechanisms and Treatment, Int. J. Antimicrob. Agents, 55, 105950 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105950
  51. A.K. Ghosh, M. Brindisi, D. Shahabi and M.E. Chapman, Drug Develop-ment and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics, ChemMedChem, 15, 907 (2020); https://doi.org/10.1002/cmdc.202000223
  52. M.T. Islam, C. Sarkar, D.M. El-kersh, S. Jamaddar, S.J. Uddin, J.A. Shilpi and M.S. Mubarak, Natural Products and their Derivatives Against Coronavirus: A Review of the Non-clinical and Pre-clinical Data, Phytother. Res., (2020); https://doi.org/10.1002/ptr.6700
  53. T. Opatz, J. SennBilfinger and C. Richert, Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2: A Short Note on Hand Sanitizers, Drug Candidates and Outreach, Angew. Chem. Int. Ed., 59, 9236 (2020); https://doi.org/10.1002/anie.202004721
  54. W.C.W. Chan, Nano Research for COVID-19, ACS Nano, 14, 3719 (2020); https://doi.org/10.1021/acsnano.0c02540
  55. C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey and D. Albaiu, Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci., 6, 315 (2020); https://doi.org/10.1021/acscentsci.0c00272
  56. Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800, http://ir.inovio.com/news-and-media/news/pressrelease-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx
  57. GlaxoSmithKline press release on 2/24/20. https://www.gsk.com/en-gb/media/press-releases/clover-and-gsk-announce-researchcollaboration-to-evaluate-coronavirus-covid-19-vaccine-candidatewith-pandemic-adjuvant-system
  58. Generex press release on 2/27/20. https://storage.googleapis.com/wzukusers/user-26831283/documents/5e57ed391b286sVf68Kq/PR_Generex_Coronavirus_Update_2_27_ 2020.pdf
  59. Novavax press release on 2/26/20. http://ir.novavax.com/news-releases/news-release-details/novavax-advances-developmentnovel-covid-19-vaccine.
  60. M. Bhattacharya, A.R. Sharma, P. Patra, P. Ghosh, G. Sharma, B.C. Patra, S.-S. Lee and C. Chakraborty, Development of Epitope-Based Peptide Vaccine Against Novel Coronavirus 2019 (SARS-COV-2): Immunoinformatics Approach, J. Med. Virol., 92, 618 (2020); https://doi.org/10.1002/jmv.25736
  61. B. Robson, Computers and Viral Diseases. Preliminary Bioinformatics Studies on the Design of a Synthetic Vaccine and a Preventative Peptido-mimetic Antagonist Against The SARS-CoV-2 (2019-nCoV, Covid-19) Coronavirus, Comput. Biol. Med., 119, 103670 (2020); https://doi.org/10.1016/j.compbiomed.2020.103670
  62. R.J. Malonis, J.R. Lai and O. Vergnolle, Peptide-Based Vaccines: Current Progress and Future Challenges, Chem. Rev., 120, 3210 (2020); https://doi.org/10.1021/acs.chemrev.9b00472
  63. Moderna press release on 2/24/2020 https://investors.modernatx.com/news-releases/news-release-details/moderna-shipsmrna-vaccine-against-novel-coronavirus-mrna-1273