Main Article Content

Abstract

The effect of inhibition of temozolomide, an alkylating agent widely used in cancer treatments, with carbonic anhydrase XIII protein was investigated using docking studies. The stability of temozolomide in the protein environment was assessed and analyzed by molecular dynamics simulation. The topological and charge density variations of temozolomide were studied in detail to perceive the primary insight of the pharmaceutical actions.

Keywords

Temozolomide Docking Carbonic anhydrase XIII Binding energy

Article Details

How to Cite
Meenashi, R., Selvaraju, K., Jayalakshmi, P., Nidhin, P., & David Stephen, A. (2020). Docking and Molecular Dynamic Simulation of Temozolomide with Carbonic Anhydrase XIII. Asian Journal of Organic & Medicinal Chemistry, 5(4), 332–339. https://doi.org/10.14233/ajomc.2020.AJOMC-P300

References

  1. A.F. Tamimi and M. Juweid, ed.: S. De Vleeschouwer, Epidemiology and Outcome of Glioblastoma, in: Glioblastoma, Codon Publications, Brisbane, Australia, Chap. 8, pp. 143-153 (2017).
  2. E.M. Sizoo, H.R.W. Pasman, L. Dirven, C. Marosi, W. Grisold, R. Grant, G. Stockhammer, J. Egeter, S. Chang, J.J. Heimans, L. Deliens, J.C. Reijneveld and M.J.B. Taphoorn, The End-of-life Phase of High-Grade Glioma Patients: A Systematic Review, Support. Care Cancer, 22, 847 (2014); https://doi.org/10.1007/s00520-013-2088-9
  3. D. Wang, C. Wang, L. Wang and Y. Chen, A Comprehensive Review in Improving Delivery of Small-Molecule Chemotherapeutic Agents Overcoming the Blood-Brain/Brain Tumor Barriers for Glioblastoma Treatment, Drug Deliv., 26, 551 (2019); https://doi.org/10.1080/10717544.2019.1616235
  4. H.S. Friedman, T. Kerby and H. Calvert, Temozolomide and Treatment of Malignant Glioma, Clin. Cancer Res., 6, 2585 (2000).
  5. P. Mujumdar, J. Kopecka, S. Bua, C.T. Supuran, C. Riganti and S.A. Poulsen, Carbonic Anhydrase XII Inhibitors Overcome Temozolomide Resistance in Glioblastoma, J. Med. Chem., 62, 4174 (2019); https://doi.org/10.1021/acs.jmedchem.9b00282
  6. M.Y. Mboge, B.P. Mahon, R. McKenna and S.C. Frost, Carbonic Anhydrases: Role in pH Control and Cancer, Metabolites, 8, 19 (2018); https://doi.org/10.3390/metabo8010019
  7. A. Zakšauskas, E. Èapkauskaitë, L. Jezepèikas, V. Linkuvienë, M. Kisonaitë, A. Smirnov, E. Manakova, S. Gražulis and D. Matulis, Design of Two-Tail Compounds with Rotationally Fixed Benzenesulfonamide Ring as Inhibitors of Carbonic Anhydrases, Eur. J. Med. Chem., 156, 61 (2018); https://doi.org/10.1016/j.ejmech.2018.06.059
  8. Schrödinger, Maestro | Schrödinger, Schrödinger Release 2018-1. (2018).
  9. W.L. DeLano, The PyMOL Molecular Graphics System, Version 1.1, Schr{ö}dinger LLC (2002).
  10. J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser and C. Simmerling, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput., 11, 3696 (2015); https://doi.org/10.1021/acs.jctc.5b00255
  11. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, The Amber Biomolecular Simulation Programs, J. Comput. Chem., 26, 1668 (2005); https://doi.org/10.1002/jcc.20290
  12. M.F. Harrach and B. Drossel, Structure and Dynamics of TIP3P, TIP4P, and TIP5P Water near Smooth and Atomistic Walls of Different Hydroaffinity, J. Chem. Phys., 140, 174501 (2014); https://doi.org/10.1063/1.4872239
  13. M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw and R.A. Friesner, A Hierarchical Approach to All-Atom Protein Loop Prediction, Proteins, 55, 351 (2004); https://doi.org/10.1002/prot.10613
  14. G.J. Martyna, A. Hughes and M.E. Tuckerman, Molecular Dynamics Algorithms for Path Integrals at Constant Pressure, J. Chem. Phys., 110, 3275 (1999); https://doi.org/10.1063/1.478193
  15. D.R. Roe and T.E. Cheatham III, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data, J. Chem. Theory Comput., 9, 3084 (2013); https://doi.org/10.1021/ct400341p
  16. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
  17. P. Turner, XMGRACE, Version 5.1.19., Cent. Coast. Land-Margin Res. Oregon Grad. Inst. Sci. Technol. Beavert, USA (2005).
  18. S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities, Expert Opin. Drug Discov., 10, 449 (2015); https://doi.org/10.1517/17460441.2015.1032936
  19. B.R. Miller III, T.D. McGee Jr., J.M. Swails, N. Homeyer, H. Gohlke and A.E. Roitberg, MMPBSA.py: An Efficient Program for End-State Free Energy Calculations, J. Chem. Theory Comput., 8, 3314 (2012); https://doi.org/10.1021/ct300418h
  20. P. Geerlings, F. De Proft and W. Langenaeker, Conceptual Density Functional Theory, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
  22. AIM2000, J. Comput. Chem., 22, 545 (2001); https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  23. C. Köhler, J. Lübben, L. Krause, C. Hoffmann, R. Herbst-Irmer and D. Stalke, Comparison of Different Strategies for Modelling Hydrogen Atoms in Charge Density Analyses, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 75, 434 (2019); https://doi.org/10.1107/S2052520619004517
  24. A. Stash and V. Tsirelson, WinXPRO: A Program for Calculating Crystal and Molecular Properties Using Multipole Parameters of the Electron Density, J. Appl. Cryst., 35, 371 (2002); https://doi.org/10.1107/S0021889802003230
  25. H. Birkedal, D. Madsen, R.H. Mathiesen, K. Knudsen, H.P. Weber, P. Pattison and D. Schwarzenbach, The Charge Density of Urea from Synchrotron Diffraction Data, Acta Crystallogr. A, 60, 371 (2004); https://doi.org/10.1107/S0108767304015120
  26. D.S. Arputharaj, V.R. Hathwar, T.N. Guru Row and P. Kumaradhas, Topological Electron Density Analysis and Electrostatic Properties of Aspirin: An Experimental and Theoretical Study, Cryst. Growth Des., 12, 4357 (2012); https://doi.org/10.1021/cg300269n
  27. A. Volkov, Y. Abramov, P. Coppens and C. Gatti, On the Origin of Topological Differences between Experimental and Theoretical Crystal Charge Densities, Acta Crystallogr. A, 56, 332 (2000); https://doi.org/10.1107/S0108767300003202