Main Article Content

Abstract

COVID-19 is the infectious pandemic disease caused by the novel coronavirus. The COVID-19 is spread globally in a short span of time. The Ministry of AYUSH, India which promotes Siddha and other Indian system of medicine recommends the use of formulation like Nilavembu Kudineer and Kaba Sura Kudineer Chooranam (KSKC). The present work seeks to provide the evidence for the action of 74 different constituents of the KSKC formulation acting on two critical targets. That is main protease and SARS-CoV-2 RNA-dependent RNA polymerase target through molecular docking studies. The molecular docking was done by using AutoDock Tools 1.5.6 of the 74 compounds, about 50 compounds yielded docking results against COVID-19 main protease while 42 compounds yielded against SARS-CoV-2 RNA-dependent RNA polymerase. This research has concluded that the KSKC has the lead molecules that inhibits COVID-19’s target of main protease of COVID-19 and SARS-CoV-2 RNA-dependent RNA polymerase.

Keywords

SARS-CoV-2 AYUSH Computational model AutoDock in silico Siddha

Article Details

How to Cite
Gopalasatheeskumar, K., Lakshmanan, K., Moulishankar, A., Suresh, J., Kumuthaveni Babu, D., & Kalaichelvan, V. (2020). Screening of Kabasura Kudineer Chooranam against COVID-19 through Targeting of Main Protease and RNA-Dependent RNA Polymerase of SARS-CoV-2 by Molecular Docking Studies. Asian Journal of Organic & Medicinal Chemistry, 5(4), 319–331. https://doi.org/10.14233/ajomc.2020.AJOMC-P299

References

  1. A. Moulishankar, M. Ramasamy, S. Ravichandran and G. Kasiramar, Review on COVID-19, Asian J. Res. Pharm. Sci. Biotechnol., 8, 72 (2020).
  2. WHO reports Coronavirus Disease (COVID-19) (2020); https://covid19.who.int/
  3. S. Rathi, I. Pranav, K. Ashwini and K. Shriprakash, Hydroxychloroquine Prophylaxis for COVID-19 Contacts in India, Lancet Infect. Dis., 20, 1118 (2020); https://doi.org/10.1016/S1473-3099(20)30313-3
  4. National Taskforce for COVID-19 Advisory on the Use of Hydroxy-chloroquine as Prophylaxis for SARS-CoV-2 infection (2020).
  5. Advisory from Ministry of AYUSH for Meeting the Challenge Arising Out of Spread of Coronavirus (Covid-19) in India dated 6th March 2020.
  6. A.K. Singh, A. Singh, A. Shaikh, R. Singh and A. Misra, Chloroquine and Hydroxychloroquine in the Treatment of Covid-19 with or without Diabetes: A Systematic Search and a Narrative Review with a Special Reference to India and other Developing Countries, Diabetes Metab. Syndr., 14, 241 (2020); https://doi.org/10.1016/j.dsx.2020.03.011
  7. P. Gautret, J.C. Lagier, P. Parola, V.T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H. Tissot Dupont, S. Honoré, P. Colson, E. Chabrière, B. La Scola, J.-M. Rolain, P. Brouqui and D. Raoult, Hydroxychloroquine and Azithromycin as a Treatment of Covid-19: Results of an Open-label Non-Randomized Clinical Trial, Int. J. Antimicrob. Agents, 56, 105949 (2020); https://doi.org/10.1016/j.ijantimicag.2020.105949
  8. J. Saravanan, D. Neethu, K. Gopalasatheeskumar, V. Sanish Devan, K. Thanga Kokila and M. Sanjay, Anti-inflammatory, Antipyretic and Antibacterial Study of Kabasura Kudineer Choornam, Int. J. Curr. Adv. Res., 7, 9992 (2018); https://doi.org/10.24327/ijcar.2018.9997.1672
  9. C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Experi-mental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
  10. M.S. Hossain, Z. Urbi, A. Sule and K.M. Hafizur Rahman, Andrographis paniculata (Burm. f.) Wall. ex Nees: A Review of Ethnobotany, Phyto-chemistry and Pharmacology, Scientific World J., 27, 4905 (2014); https://doi.org/10.1155/2014/274905
  11. J.J. Patel, S.R. Acharya and N.S. Acharya, Clerodendrum serratum (L.) Moon.-A Review on Traditional Uses, Phytochemistry and Pharmacological Activities, J. Ethnopharmacol., 154, 268 (2014); https://doi.org/10.1016/j.jep.2014.03.071
  12. Q.Q. Mao, X.Y. Xu, S.Y. Cao, R.-Y. Gan, H. Corke, T. Beta and H.-B. Li, Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe), Foods, 8, 185 (2019); https://doi.org/10.3390/foods8060185
  13. K. Kaur and S. Kaushal,Phytochemistry and Pharmacological Aspects of Syzygium aromaticum: A Review, J. Pharmacogn. Phytochem., 8, 398 (2019).
  14. A. Marathakam, N. Kannappan, S. Jasemine, A. Santhiagu, M. Sreejith and M.P. Ajith, Studies on Phytochemical and in vitro Antioxidant Potential of Justicia beddomei (Clarke) Bennett, Free Rad. Antiox., 2, 26 (2012); https://doi.org/10.5530/ax.2012.4.5
  15. P. Ravi, V. RamaRao, K.E. Pravallika, Phytochemical, Pharmacological Profiles of Tragia involucrate, Int. J. Chemtech Res., 11, 37 (2018).
  16. P. Sharma, B.P. Dwivedee, D. Bisht, A.K. Dash and D. Kumar, The Chemical Constituents and Diverse Pharmacological Importance of Tinospora cordifolia, Heliyon, 5, e02437 (2019); https://doi.org/10.1016/j.heliyon.2019.e02437
  17. P.R. Sardar, S.R. Manik, Therapeutic Potential of Aromatic Phyto-constituents Derived from Anisochilus carnosus (L.) Wall, Int. J. Appl. Res., 3(3S), 194 (2017).
  18. A.M. Peerzada, H.H. Ali, M. Naeem, M. Latif, A.H. Bukhari and A. Tanveer, Cyperus rotundus L.: Traditional Uses, Phytochemistry and Pharmacological Activities, J. Ethnopharmacol., 174, 540 (2015); https://doi.org/10.1016/j.jep.2015.08.012
  19. A.H. El-Far, H.M. Shaheen, A.W. Alsenosy, Y.S. El-Sayed, S.K. Al Jaouni and S.A. Mousa, Costus speciosus: Traditional Uses, Phytochemistry, and Therapeutic Potentials, Phcog. Rev., 12, 120 (2018); https://doi.org/10.4103/phrev.phrev_29_17
  20. A. Usmani, M. Khushtar, M. Arif, M. Siddiqui, S. Singh and M. Mujahid, Pharmacognostic and Phytopharmacology Study of Anacyclus pyrethrum: An Insight, J. Appl. Pharm. Sci., 6, 144 (2016); https://doi.org/10.7324/JAPS.2016.60325
  21. F. Jose, S. Lal, S. Lekshmi, V. Jiju and E. Abraham, Purified Water from Urine: A Review, Pharma. Innovation, 6, 1 (2017); https://doi.org/10.7897/2277-4572.06142
  22. A.D. Kshirsagar, K.G. Ingale, N.S. Vyawahare and V.S. Thorve, Hygrophila spinosa: A Comprehensive Review, Pharmacogn. Rev., 4, 167 (2010); https://doi.org/10.4103/0973-7847.70912
  23. Promila and V.K. Madan, Therapeutic & Phytochemical Profiling of Terminalia chebula Retz. (Harad): A Review, J. Med. Plants Stud., 6, 25 (2018).
  24. A. Moulishankar and K. Lakshmanan, Data on Molecular Docking of Naturally Occurring Flavonoids with Biologically Important Targets, Data Brief, 29, 105243 (2020); https://doi.org/10.1016/j.dib.2020.105243
  25. M. Pal, G. Berhanu, C. Desalegn and V. Kandi, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update, Cureus, 12, 7423 (2020); https://doi.org/10.7759/cureus.7423
  26. A. Zumla, J.F.W. Chan, E.I. Azhar, D.S.C. Hui and K.Y. Yuen, Coronaviruses-Drug Discovery and Therapeutic Options, Nat. Rev. Drug Discov., 15, 327 (2016); https://doi.org/10.1038/nrd.2015.37
  27. A.A. Elfiky, Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp): A Molecular Docking Study, Life Sci., 117, 592 (2020); https://doi.org/10.1016/j.lfs.2020.117592
  28. X. Xue, H. Yu, H. Yang, F. Xue, Z. Wu, W. Shen, J. Li, Z. Zhou, Y. Ding, Q. Zhao, X.C. Zhang, M. Liao, M. Bartlam and Z. Rao, Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design, J. Virol., 82, 2515 (2008); https://doi.org/10.1128/JVI.02114-07
  29. D. Sivaraman and P.S. Pradeep, Revealing Anti-viral Potential of Bio-active Therapeutics Targeting SARS-CoV2- polymerase (RdRp) in Combating COVID-19: Molecular Investigation on Indian Traditional Medicines, Preprints, 2020, 2020030450 (2020); https://doi.org/10.20944/preprints202003.0450.v1