Main Article Content

Abstract

The quantitative structure activity relationships (QSARs) have been investigated on a series of substituted phenyl triazolinones having protoporphyrinogen oxidase (PPO) inhibition activities. The density functional theory (DFT) method is applied to calculate the quantum chemical descriptors. The derived QSAR model is based on three molecular descriptors namely highest occupied molecular orbital (HOMO) energy, electrophilic group frontier electron density (FgE) and nucleus independent chemical shift (NICS). The best QSAR model has a square correlation coefficient r2 =0.886 and cross-validated square correlation coefficient q2 = 0.837.

Keywords

Phenyl triazolinones Protoporphyrinogen oxidase QSAR DFT

Article Details

How to Cite
Kumar Sarkar, B. (2020). DFT Based QSAR Studies of Phenyl Triazolinones of Protoporphyrinogen Oxidase Inhibitors. Asian Journal of Organic & Medicinal Chemistry, 5(4), 307–311. https://doi.org/10.14233/ajomc.2020.AJOMC-P280

References

  1. M. Matringe, J.M. Camadro, P. Labbe and R. Scalla, Protoporphyrinogen Oxidase as a Molecular Target for Diphenyl Ether Herbicides, Biochem. J., 260, 231 (1989); https://doi.org/10.1042/bj2600231
  2. D.A. Witkowski and B.P. Halling, Inhibition of Plant Protoporphyri-nogen Oxidase by the Herbicide Acifluorfen-Methyl, Plant Physiol., 90, 1239 (1989); https://doi.org/10.1104/pp.90.4.1239
  3. J.W. Lyga, R.M. Patera, M.J. Plummer, B.P. Halling and A. Yuhas, Synthesis, Mechanism of Action, and QSAR of Herbicidal 3-Substituted-2-aryl-4,5,6,7-tetrahydroindazoles, Pestic. Sci., 42, 29 (1994); https://doi.org/10.1002/ps.2780420106
  4. G. Theodoridis, Structure-Activity Relationships of Herbicidal Aryltriazolinones, Pestic. Sci., 50, 283 (1997); https://doi.org/10.1002/(SICI)1096-9063(199708)50:4<283::AID-PS600>3.0.CO;2-L
  5. J. Wan, L. Zhang and G. Yang, Quantitative Structure–Activity Relationships for Phenyl Triazolinones of Protoporphyrinogen Oxidase Inhibitors: A Density Functional Theory Study, J. Comput. Chem., 25, 1827 (2004); https://doi.org/10.1002/jcc.20122
  6. K. Roy and S. Paul, Docking and 3D QSAR Studies of Protopor-phyrinogen Oxidase Inhibitor 3H-Pyrazolo[3,4-d][1,2,3]triazin-4-one Derivatives, J. Mol. Model., 16, 137 (2010); https://doi.org/10.1007/s00894-009-0528-8
  7. D. Wang, R.B. Zhang, I. Ismail, Z.Y. Xue, L. Liang, S.Y. Yu, X. Wen and Z. Xi, Design, Herbicidal Activity and QSAR Analysis of Cycloalka-[d]quinazoline-2,4-dione Benzoxazinones as Protoporphyrinogen IX Oxidase Inhibitors, J. Agric. Food Chem., 67, 9254 (2019); https://doi.org/10.1021/acs.jafc.9b02996
  8. R.G. Parr, Density Functional Theory, Annu. Rev. Phys. Chem., 34, 631 (1983); https://doi.org/10.1146/annurev.pc.34.100183.003215
  9. R.G. Parr and W. Yang, Density-Functional Theory of the Electronic Structure of Molecules, Annu. Rev. Phys. Chem., 46, 701 (1995); https://doi.org/10.1146/annurev.pc.46.100195.003413
  10. H. Chermette, Chemical Reactivity Indexes in Density Functional Theory, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
  11. P. Geerlings, F. De Proft and W. Langenaeker, Conceptual Density Functional Theory, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
  12. A. Sarkar, T.R. Middya and A.D. Jana, J. Mol. Model., 18, 2621 (2012); https://doi.org/10.1007/s00894-011-1274-2
  13. P. von Rague Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R. van Eikema Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc., 118, 6317 (1996); https://doi.org/10.1021/ja960582d
  14. A. Sarkar and G. Mostafa, A QSAR Study of Radical Scavenging Anti-oxidant Activity of a Series of Flavonoids using DFT Based Quantum Chemical Descriptors-The Importance of Group Frontier Electron Density, J. Mol. Model., 15, 1221 (2009); https://doi.org/10.1007/s00894-009-0481-6
  15. M. Karelson, V.S. Lobanov and A.R. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chem. Rev., 96, 1027 (1996); https://doi.org/10.1021/cr950202r
  16. M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.R. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc., Wallingford, CT (2009).
  17. A. Golbraikh, M. Shen, Z. Xiao, Y.D. Xiao, K.H. Lee and A. Tropsha, Rational Selection of Training and Test Sets for the Development of Validated QSAR Models, J. Comput. Aided Mol. Des., 17, 241 (2003); https://doi.org/10.1023/A:1025386326946
  18. D.M. Hawkins, S.C. Basak and D. Mills, Assessing Model Fit by Cross-Validation, J. Chem. Inf. Comput. Sci., 43, 579 (2003); https://doi.org/10.1021/ci025626i
  19. B.F. Thomas, D.R. Compton, B.R. Martin and S.F. Semus, Modeling the Cannabinoid Receptor: A Three-dimensional Quantitative Structure-Activity Analysis, Mol. Pharmacol., 40, 656 (1991).
  20. A. Agarwal, P.P. Pearson, E.W. Taylor, H.B. Li, T. Dahlgren, M. Herslof, Y. Yang, G. Lambert, D.L. Nelson, J.W. Regan and A.R. Martin, Three-Dimensional Quantitative Structure-Activity Relationships of 5-HT Receptor Binding Data for Tetrahydropyridinylindole Derivatives: A Comparison of the Hansch and CoMFA Methods, J. Med. Chem., 36, 4006 (1993); https://doi.org/10.1021/jm00077a003
  21. P.P. Roy and K. Roy, On Some Aspects of Variable Selection for Partial Least Squares Regression Models, QSAR Comb. Sci., 27, 302 (2008); https://doi.org/10.1002/qsar.200710043