Main Article Content


In present work, the stereospecific synthesis of optically active cis hydroxy β-lactams by catalytic transfer hydrogenation under diverse
microwave-induced conditions is invstigated. The effects of the penetration depth of the solvents are found to be more crucial than solvents with high dipole moments and dielectric constants. Despite significant progress of microwave-induced reactions, no reports have examined the penetration depth of the solvents used in these processes


β-Lactams Microwave Penetration depth Hydrogenation Catalyst

Article Details

How to Cite
Das, A., Yadav, R. N., & Banik, B. K. (2023). Microwave-Induced Catalytic Transfer Hydrogenation in Different Solvents Toward Optically Active Hydroxy β-Lactams: Effects of Penetration Depth. Asian Journal of Organic & Medicinal Chemistry, 8(1), 7–10.


  1. Testero SA, Fisher JF, Mobashery S (2003) β-Lactam antibiotics. Burgers Med Chem Drug Discov 257-402 . I. Banik, F.F. Becker and B.K. Banik, Stereoselective Synthesis of β-Lactams the Polyaromatic Imines: Entry to New and Novel Anticancer Agents, J. Med. Chem., 46, 12 (2003); . S.K. Srivastava, S.L. Srivastava and S.D. Srivastava, Synthesis of New 2-Chloro-phenothiazinothiadiazol-2-oxoaze tidines: Antimicrobial and Antiinflammatory agents, Indian J. Chem., 39B, 464 (2000).
  2. M. O’Driscoll, K. Greenhalgh, A. Young, E. Turos, S. Dickey and D.V.Li m, Studies on the Antifungal Properties of N-Thiolated β-Lactams, Bioorg. Med. Chem., 16, 7832 (2008);
  3. D.A. Burnett, β-Lactam Cholesterol Absorption Inhibitors, Curr. Med. Chem., 11, 1873 (2004);
  4. M.S. Lall, Y.K. Ramtohul, M.N. James and J.C. Vederas, Serine andThreonine β-Lactones: A New Class of Hepatitis A Virus 3C Cystein Proteinase Inhibitors, J. Org. Chem., 67, 1536 (2002);https:/ / Asian Journal of Organic & Medicinal Chemistry 9
  5. C. Saturnino, B. Fusco, P. Saturnino, G.D.E. Martino, F. Rocco and J.-C. Lancelot, Evaluation of Analgesic and Anti-inflammatory Activity
  6. Of Novel β-Lactam Monocyclic Compounds, Biol. Pharm. Bull., 23, 654 (2000);
  7. R.K. Goel, M.P. Mahajan and S.K. Kulkarni, Evaluation of Antihyperglycemic Activity of Some Novel Monocyclic β-Lactam, J. Pharm. Pharm. Sci., 7, 80 (2004).
  8. B.K. Banik, β-Lactams: Novel Synthetic Pathways and Applications, Springer (2017). 10. I. Banik and B.K. Banik, Synthesis of β-lactams and their chemical manipulations via microwave-induced reactions. In: β-Lactams: Unique Structures of Distinction for Novel Molecules. Springer, pp 183–221(2012).
  9. A. Das and B. Banik, Studies on Dipole Moment of Penicillin Isomers and Related Antibiotics, J. Indian Chem. Soc., 97, 911 (2020).
  10. A. Das and B.K. Banik, Dipole Moment in Medicinal Research: Green and Sustainable Approach. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design, Elsevier, pp 921-964 (2020).
  11. A. Das and B.K. Banik, Dipole Moment Studies On α-hydroxy-β-lactam Derivatives, J. Indian Chem. Soc., 97, 1567 (2020).
  12. A. Das, A.K. Bose and B.K. Banik, Stereoselective Synthesis of β-Lactams under Diverse Conditions: Unprecedented Observations, J. Indian Chem. Soc., 97, 917 (2020).
  13. A. Das, A.A. Alqashqari and B.K. Banik, Quantum Mechanical Calculations of Dipole Moment of Diverse Imines, J. Indian Chem. Soc., 97, 1563 (2020).
  14. A. Das, R.N. Yadav and B.K. Banik, Ascorbic Acid-mediated Reactions in Organic Synthesis, Curr. Organocatal., 7, 212 (2020); ttps://
  15. J.-S. Schanche, Microwave Synthesis Solutions from Personal Chemistry, Mol. Divers., 7, 291 (2003);
  16. S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, John Wiley & Sons (2013).
  17. J.J. Shah and K. Mohanraj, Comparison of Conventional and Microwave- Assisted Synthesis of Benzotriazole Derivatives, Indian J. Pharm. Sci., 76, 46 (2014).
  18. Y.-J. Zhu, W.-W. Wang, R.-J. Qi and X.-L. Hu, Microwave-Assist Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids, Angew. Chem., 116, 1434 (2004);
  19. A. Rizzuti and C. Leonelli, Crystallization of Aragonite Particles from Solution under Microwave Irradiation, Powder Technol., 186, 255 (2008);
  20. S. Singh, D. Gupta, V. Jain and A.K. Sharma, Microwave Processing of Materials and Applications in Manufacturing Industries: A Review, Mater. Manuf. Process., 30, 1 (2015);
  21. C. Leonelli and T.J. Mason, Microwave and Ultrasonic Processing: Now a Realistic Option for Industry, Chem. Eng. Process., 49, 885 (2010);
  22. W. Lojkowski, C. Leonelli, T. Chudoba, J. Wojnarowicz, A. Majcher and A. Mazurkiewicz, High-Energy-Low-Temperature Technologies
  23. for the Synthesis of Nanoparticles: Microwaves and High Pressure, Inorganics, 2, 606 (2014);
  24. S.C. Ameta, P.B. Punjabi, R. Ameta and C. Ameta, Microwave-Assisted Organic Synthesis: A Green Chemical Approach, CRC Press (2014)
  25. B.K. Banik, M.S. Manhas, Z. Kaluza, K.J. Barakat and A.K. Rose, Microwave-Induced Organic Reaction Enhancement Chemistry. 4 Convenient Synthesis of Enantiopure α-hydroxy-β-lactams, Tetrahedron Lett., 33, 3603 (1992); 4039(00)92513-9
  26. A.C. Metaxas, Foundation and Electroheat: A Unified Approach, Wiley (1996) 28. T. Kim, J. Lee and K.-H. Lee, Microwave Heating
  27. of Carbon-based Solid Materials, Carbon Lett., 15, 15 (2014)
  28. P. Cintas, P. Veronesi and C. Leonelli, Microwave Chemistry, Walter de Gruyter GmbH & Co KG (2017).
  29. J. Wojnarowicz, T. Chudoba and W. Lojkowski, A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies, Nanomaterials, 10, 1086 (2020); 10 Das et al.