Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
ab initio Study of Corrosion Inhibition Performance of Dibenzo-diaza-15-crown-5 and its Heterocyclic Analogs
Corresponding Author(s) : S. Hadisaputra
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
The corrosion inhibition efficiency of dibenzo-diaza-15-crown-5 (N) and its heterocyclic analogs containing O, S, and P atoms were investigated by ab initio MP2 calculations in aqueous phase. Heteroatoms have a significant role in the corrosion inhibition performance of the studied systems. The geometry parameter shows that the decrease of bond length corresponds to the increase of heteroatom covalent radius. It was revealed that phosphorus more easily donates its electrons to iron than other heteroatoms. Quantum parameters such as high occupied molecular orbital energies (EHOMO) and the fraction of electrons transferred (ΔN) have a linear relationship with inhibition efficiencies (IE %). Analysis of second order interaction energies showed the highest back-donation contribution of metal to phosphorus. Theoretical calculations shows that corrosion inhibition increases in the sequence of oxygen < nitrogen < sulfur < phosphorus.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.H, Uhlig and R.W. Revie, Corrosion and Corrosion Control, John Wiley & Sons, New York: USA (1985).
- Y. Qiang, S. Zhang, L. Guo, S. Xu, L. Feng, I.B. Obot and S. Chen, J. Clean. Prod., 152, 17 (2017); https://doi.org/10.1016/j.jclepro.2017.03.104
- M. Mobin and M. Rizvi, Carbohydr. Polym., 160, 172 (2017); https://doi.org/10.1016/j.carbpol.2016.12.056.
- T. Douadi, H. Hamani, D. Daoud, M. Al-Noaimi and S. Chafaa, J. Taiwan Inst. Chem. Eng., 71, 388 (2017); https://doi.org/10.1016/j.jtice.2016.11.026.
- J. Bhawsar, P. Jain, M.G. Valladares-Cisneros, C. Cuevas-Arteaga and M. Rani, Int. J. Electrochem. Sci., 133, 200 (2018).
- P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei and A.A. Rahim, Chem. Eng. Commun., 203, 1145 (2016); https://doi.org/10.1080/00986445.2016.1172485.
- G.L.F. Mendonça, S.N. Costa, V.N. Freire, P.N.S. Casciano, A.N. Correia and P. Lima-Neto, Corros. Sci., 115, 41 (2017); https://doi.org/10.1016/j.corsci.2016.11.012.
- L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya and C. Kaya, Appl. Surf. Sci., 406, 301 (2017); https://doi.org/10.1016/j.apsusc.2017.02.134.
- S.K. Shetty and A.N. Shetty, J. Mol. Liq., 225, 426 (2017); https://doi.org/10.1016/j.molliq.2016.11.037.
- S. Benabid, T. Douadi, S. Issaadi, C. Penverne and S. Chafaa, Measurement, 99, 53 (2017); https://doi.org/10.1016/j.measurement.2016.12.022.
- Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi and S. Meghdadi, Corros. Sci., 114, 133 (2017); https://doi.org/10.1016/j.corsci.2016.11.002.
- Y. Wang and Y. Zuo, Corros. Sci., 118, 24 (2017); https://doi.org/10.1016/j.corsci.2017.01.008.
- X. Hou, L. Gao, Z. Cui and J. Yin, IOP Conf. Series: Earth Environ. Sci., 108, 022037 (2018); https://doi.org/10.1088/1755-1315/108/2/022037.
- J. Du, Z. Huang, X.Q. Yu and L. Pu, Chem. Commun., 49, 5399 (2013); https://doi.org/10.1039/c3cc42081g.
- M. Hong, X. Wang, W. You, Z. Zhuang and Y. Yu, Chem. Eng. J., 313, 1278 (2017); https://doi.org/10.1016/j.cej.2016.11.030.
- A.S. Fouda, M. Abdallah, S.M. Al-Ashrey and A.A. Abdel-Fattah, Desalination, 250, 538 (2010); https://doi.org/10.1016/j.desal.2009.02.055.
- R. Hasanov, S. Bilge, S. Bilgiç, G. Gece and Z. Kiliç, Corros. Sci., 52, 984 (2010); https://doi.org/10.1016/j.corsci.2009.11.022.
- H. Lgaz, R. Salghi and I.H. Ali, Int. J. Electrochem. Sci., 13, 250 (2010).
- S. Hadisaputra, L.R. Canaval, H.D. Pranowo and R. Armunanto, Monatsh. Chem., 145, 737 (2014); https://doi.org/10.1007/s00706-013-1129-x.
- S. Hadisaputra, L.R. Canaval, H.D. Pranowo and R. Armunanto, Indones. J. Chem., 14, 199 (2014); https://doi.org/10.22146/ijc.21259.
- L.R. Canaval, S. Hadisaputra and T.S. Hofer, Phys. Chem. Chem. Phys., 17, 16359 (2015); https://doi.org/10.1039/C5CP01977J.
- S. Hadisaputra, H.D. Pranowo and R. Armunanto, Indones. J. Chem., 12, 207 (2012); https://doi.org/10.22146/ijc.21332.
- S. Hadisaputra, S. Hamdiani, M.A. Kurniawan and N. Nuryono, Indones. J. Chem., 17, 431 (2017); https://doi.org/10.22146/ijc.26667.
- A.A. Purwoko and S. Hadisaputra, Orient. J. Chem., 33, 717 (2017); https://doi.org/10.13005/ojc/330218.
- S. Kaya, L. Guo, C. Kaya, B. Tüzün, I.B. Obot, R. Touir and N. Islam, J. Taiwan Inst. Chem. Eng., 65, 522 (2016); https://doi.org/10.1016/j.jtice.2016.05.034.
- A. Zarrouk, I. El Ouali, M. Bouachrine, B. Hammouti, Y. Ramli, E.M. Essassi, I. Warad, A. Aouniti and R. Salghi, Res. Chem. Intermed., 39, 1125 (2013); https://doi.org/10.1007/s11164-012-0671-1.
- I.B. Obot, S. Kaya, C. Kaya and B. Tüzün, Res. Chem. Intermed., 42, 4963 (2016); https://doi.org/10.1007/s11164-015-2339-0.
- D. Zhang, Y. Tang, S. Qi, D. Dong, H. Cang and G. Lu, Corros. Sci., 102, 517 (2016); https://doi.org/10.1016/j.corsci.2015.10.002.
- S. Saha, A. Hens, N.C. Murmu and P. Banerjee, J. Mol. Liq., 215, 486 (2016); https://doi.org/10.1016/j.molliq.2016.01.024.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.J. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian03, Gaussian, Inc., Pittsburgh, PA, (2003).
- P. Pyykko and M. Atsumi, Chem. Eur. J., 15, 186 (2009); https://doi.org/10.1002/chem.200800987.
- R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030.
- I. Lukovits, E. Kalman and F. Zucchi, Corrosion, 57, 3 (2001); https://doi.org/10.5006/1.3290328.
- H.R. Obayes, G.H. Alwan, A.H. Alobaidy, M. Al-Amiery, A.A. Kadhum and A.B. Mohamad, Chem. Cent. J., 8, 21 (2014); https://doi.org/10.1186/1752-153X-8-21.
References
H.H, Uhlig and R.W. Revie, Corrosion and Corrosion Control, John Wiley & Sons, New York: USA (1985).
Y. Qiang, S. Zhang, L. Guo, S. Xu, L. Feng, I.B. Obot and S. Chen, J. Clean. Prod., 152, 17 (2017); https://doi.org/10.1016/j.jclepro.2017.03.104
M. Mobin and M. Rizvi, Carbohydr. Polym., 160, 172 (2017); https://doi.org/10.1016/j.carbpol.2016.12.056.
T. Douadi, H. Hamani, D. Daoud, M. Al-Noaimi and S. Chafaa, J. Taiwan Inst. Chem. Eng., 71, 388 (2017); https://doi.org/10.1016/j.jtice.2016.11.026.
J. Bhawsar, P. Jain, M.G. Valladares-Cisneros, C. Cuevas-Arteaga and M. Rani, Int. J. Electrochem. Sci., 133, 200 (2018).
P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei and A.A. Rahim, Chem. Eng. Commun., 203, 1145 (2016); https://doi.org/10.1080/00986445.2016.1172485.
G.L.F. Mendonça, S.N. Costa, V.N. Freire, P.N.S. Casciano, A.N. Correia and P. Lima-Neto, Corros. Sci., 115, 41 (2017); https://doi.org/10.1016/j.corsci.2016.11.012.
L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya and C. Kaya, Appl. Surf. Sci., 406, 301 (2017); https://doi.org/10.1016/j.apsusc.2017.02.134.
S.K. Shetty and A.N. Shetty, J. Mol. Liq., 225, 426 (2017); https://doi.org/10.1016/j.molliq.2016.11.037.
S. Benabid, T. Douadi, S. Issaadi, C. Penverne and S. Chafaa, Measurement, 99, 53 (2017); https://doi.org/10.1016/j.measurement.2016.12.022.
Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi and S. Meghdadi, Corros. Sci., 114, 133 (2017); https://doi.org/10.1016/j.corsci.2016.11.002.
Y. Wang and Y. Zuo, Corros. Sci., 118, 24 (2017); https://doi.org/10.1016/j.corsci.2017.01.008.
X. Hou, L. Gao, Z. Cui and J. Yin, IOP Conf. Series: Earth Environ. Sci., 108, 022037 (2018); https://doi.org/10.1088/1755-1315/108/2/022037.
J. Du, Z. Huang, X.Q. Yu and L. Pu, Chem. Commun., 49, 5399 (2013); https://doi.org/10.1039/c3cc42081g.
M. Hong, X. Wang, W. You, Z. Zhuang and Y. Yu, Chem. Eng. J., 313, 1278 (2017); https://doi.org/10.1016/j.cej.2016.11.030.
A.S. Fouda, M. Abdallah, S.M. Al-Ashrey and A.A. Abdel-Fattah, Desalination, 250, 538 (2010); https://doi.org/10.1016/j.desal.2009.02.055.
R. Hasanov, S. Bilge, S. Bilgiç, G. Gece and Z. Kiliç, Corros. Sci., 52, 984 (2010); https://doi.org/10.1016/j.corsci.2009.11.022.
H. Lgaz, R. Salghi and I.H. Ali, Int. J. Electrochem. Sci., 13, 250 (2010).
S. Hadisaputra, L.R. Canaval, H.D. Pranowo and R. Armunanto, Monatsh. Chem., 145, 737 (2014); https://doi.org/10.1007/s00706-013-1129-x.
S. Hadisaputra, L.R. Canaval, H.D. Pranowo and R. Armunanto, Indones. J. Chem., 14, 199 (2014); https://doi.org/10.22146/ijc.21259.
L.R. Canaval, S. Hadisaputra and T.S. Hofer, Phys. Chem. Chem. Phys., 17, 16359 (2015); https://doi.org/10.1039/C5CP01977J.
S. Hadisaputra, H.D. Pranowo and R. Armunanto, Indones. J. Chem., 12, 207 (2012); https://doi.org/10.22146/ijc.21332.
S. Hadisaputra, S. Hamdiani, M.A. Kurniawan and N. Nuryono, Indones. J. Chem., 17, 431 (2017); https://doi.org/10.22146/ijc.26667.
A.A. Purwoko and S. Hadisaputra, Orient. J. Chem., 33, 717 (2017); https://doi.org/10.13005/ojc/330218.
S. Kaya, L. Guo, C. Kaya, B. Tüzün, I.B. Obot, R. Touir and N. Islam, J. Taiwan Inst. Chem. Eng., 65, 522 (2016); https://doi.org/10.1016/j.jtice.2016.05.034.
A. Zarrouk, I. El Ouali, M. Bouachrine, B. Hammouti, Y. Ramli, E.M. Essassi, I. Warad, A. Aouniti and R. Salghi, Res. Chem. Intermed., 39, 1125 (2013); https://doi.org/10.1007/s11164-012-0671-1.
I.B. Obot, S. Kaya, C. Kaya and B. Tüzün, Res. Chem. Intermed., 42, 4963 (2016); https://doi.org/10.1007/s11164-015-2339-0.
D. Zhang, Y. Tang, S. Qi, D. Dong, H. Cang and G. Lu, Corros. Sci., 102, 517 (2016); https://doi.org/10.1016/j.corsci.2015.10.002.
S. Saha, A. Hens, N.C. Murmu and P. Banerjee, J. Mol. Liq., 215, 486 (2016); https://doi.org/10.1016/j.molliq.2016.01.024.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.J. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian03, Gaussian, Inc., Pittsburgh, PA, (2003).
P. Pyykko and M. Atsumi, Chem. Eur. J., 15, 186 (2009); https://doi.org/10.1002/chem.200800987.
R.G. Pearson, Inorg. Chem., 27, 734 (1988); https://doi.org/10.1021/ic00277a030.
I. Lukovits, E. Kalman and F. Zucchi, Corrosion, 57, 3 (2001); https://doi.org/10.5006/1.3290328.
H.R. Obayes, G.H. Alwan, A.H. Alobaidy, M. Al-Amiery, A.A. Kadhum and A.B. Mohamad, Chem. Cent. J., 8, 21 (2014); https://doi.org/10.1186/1752-153X-8-21.