Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Infrared Spectroscopy and Elastic Properties of Copper Substituted Nickel Zinc Ferrite
Corresponding Author(s) : K.S. Lohar
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
Nanocrystalline copper substituted nickel zinc ferrites with composition, Ni0.5CuxZn0.5-xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) synthesized by sol-gel auto combustion technique. All the precursors sintered at 400 ºC for 4 h. The stoichiometry and single phase cubic spinel structure confirmed from EDAX and XRD patterns, respectively. Morphology studied by SEM technique. Infrared spectrum of prepared samples investigated at room temperature in the range of 800-300 cm-1. Three major IR absorption bands of tetrahedral frequency in the range of 578-551 cm-1, octahedral frequency in the range of 422-406 cm-1 and ν3 in the range of 352.08 to 325.01 cm-1 observed. The stiffness constant (C11 and C12), elastic moduli, such as Young′s modulus, rigidity modulus, Poisson′s ratio and Debye temperature were determined from IR and structural data. The stiffness constant (C11 and C12) and elastic moduli decreases while Debye temperature increases with copper substitution
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain and M. Shongwe, Physica B, 407, 795 (2012); https://doi.org/10.1016/j.physb.2011.12.097.
- Y. Li, Q. Li, M. Wen, Y. Zhang, Y. Zhai, Z. Xie, F. Xu and S. Wei, J. Electron Spectrosc. Rel. Phenom., 160, 1 (2007); https://doi.org/10.1016/j.elspec.2007.04.003.
- P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang and K. Yatsui, J. Nanopart. Res., 8, 29 (2006); https://doi.org/10.1007/s11051-005-5427-z.
- Y. Zhihao and Z. Lide, Mater. Res. Bull., 33, 1587 (1998); https://doi.org/10.1016/S0025-5408(98)00164-0.
- G.R. Dube and V.S. Darshane, J. Mol. Catal., 79, 285 (1993); https://doi.org/10.1016/0304-5102(93)85108-6.
- T.K. Kundu and S. Mishra, Bull. Mater. Sci., 31, 507 (2008); https://doi.org/10.1007/s12034-008-0079-0.
- A. Pavlovitch, J. Phys. IV FRANCE, 7, C1 (1997); https://doi.org/10.1051/jp1:1997124.
- M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M.A. Muhammad and A. Khan, Curr. Appl. Phys., 14, 716 (2014); https://doi.org/10.1016/j.cap.2014.02.021.
- R.N. Panda, J.C. Shih and T.S. Chin, J. Magn. Magn. Mater., 257, 79 (2003); https://doi.org/10.1016/S0304-8853(02)01036-3.
- K.B. Modi, U.N. Trivedi, P.U. Shrama, V.K. Lakhani, M.C. Chhantbar, H.H. Joshi, Indian J. Pure Appl. Phys., 44, 165 (2006).
- K.B. Modi, S.J. Shah, N.B. Pujara, T.K. Pathak, N.H. Vasoya and I.G. Jhala, J. Mol. Struct., 1049, 250 (2013); https://doi.org/10.1016/j.molstruc.2013.06.051.
- R.D. Waldron, Phys. Rev., 99, 1727 (1955); https://doi.org/10.1103/PhysRev.99.1727.
- T.T. Srinivasan, C.M. Srivastava, N. Venkataramani and M.J. Patni, Bull. Mater. Sci., 6, 1063 (1984); https://doi.org/10.1007/BF02743958.
- H.M. Zaki and H.A. Dawoud, Physica B, 405, 4476 (2010); https://doi.org/10.1016/j.physb.2010.08.018.
- S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble and K.M. Jadhav, J. Mol. Struct., 1038, 40 (2013); https://doi.org/10.1016/j.molstruc.2012.12.053.
- D.-H. Chen and X.-R. He, Mater. Res. Bull., 36, 1369 (2001); https://doi.org/10.1016/S0025-5408(01)00620-1.
- V.V. Awati, S.M. Rathod, S.E. Shirsath and M.L. Mane, J. Alloys Compd., 553, 157 (2013); https://doi.org/10.1016/j.jallcom.2012.11.045.
- S. Güner, S. Esir, A. Baykal, A. Demir and Y. Bakis, Superlatt. Microstruct., 74, 184 (2014); https://doi.org/10.1016/j.spmi.2014.06.021.
- M.A. Rahman, M.A. Rahman and A.K.M.A. Hossain, J. Magn. Magn. Mater., 369, 168 (2014); https://doi.org/10.1016/j.jmmm.2014.06.033.
- L. Vegard, Z. Physik, 5, 17 (1921); https://doi.org/10.1007/BF01349680.
- B.P. Ladgaonkar, P.N. Vasambekar and A.S. Vaingankar, J. Mater. Sci. Lett., 19, 1375 (2000); https://doi.org/10.1023/A:1006713518433.
- H.A. Jahn and E. Teller, Proc. R. Soc. Lond. A Math. Phys. Sci., 161, 220 (1937); https://doi.org/10.1098/rspa.1937.0142.
- M C Chhantbar, U N Trivedi, P V Tanna, H J Shah, R P Vara, H H Joshi and K B Mod, Indian J. Phys., 78A, 321 (2004).
- E.W. Gorter, Philips Res. Rep., 9, 295 (1954).
- S.A. Mazen, T.A. Elmosalami, ISRN Condens. Matter Phys., Article ID 820726 (2011); https://doi.org/10.5402/2011/820726.
- K.B. Modi, M.C. Chhantbar and H.H. Joshi, Ceram. Int., 32, 111 (2006); https://doi.org/10.1016/j.ceramint.2005.01.005.
- S.E. Shirsath, S.M. Patange, R.H. Kadam, M.L. Mane and K.M. Jadhav, J. Mol. Struct., 1024, 77 (2012); https://doi.org/10.1016/j.molstruc.2012.05.014.
- V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, J. Alloys Compd., 488, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.
- S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Varsoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi and K.B. Modi, Indian J. Pure Appl. Phy., 45, 596 (2007).
- P.B. Belavi, L.R. Naik and G.N. Chavan, J. Shivaji Univ. (Sci. Technol.), 41, 2 (2014-2015).
- V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, J. Alloys Compd., 488, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.
- W.A. Wooster, Rep. Prog. Phys., 16, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302.
References
K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain and M. Shongwe, Physica B, 407, 795 (2012); https://doi.org/10.1016/j.physb.2011.12.097.
Y. Li, Q. Li, M. Wen, Y. Zhang, Y. Zhai, Z. Xie, F. Xu and S. Wei, J. Electron Spectrosc. Rel. Phenom., 160, 1 (2007); https://doi.org/10.1016/j.elspec.2007.04.003.
P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang and K. Yatsui, J. Nanopart. Res., 8, 29 (2006); https://doi.org/10.1007/s11051-005-5427-z.
Y. Zhihao and Z. Lide, Mater. Res. Bull., 33, 1587 (1998); https://doi.org/10.1016/S0025-5408(98)00164-0.
G.R. Dube and V.S. Darshane, J. Mol. Catal., 79, 285 (1993); https://doi.org/10.1016/0304-5102(93)85108-6.
T.K. Kundu and S. Mishra, Bull. Mater. Sci., 31, 507 (2008); https://doi.org/10.1007/s12034-008-0079-0.
A. Pavlovitch, J. Phys. IV FRANCE, 7, C1 (1997); https://doi.org/10.1051/jp1:1997124.
M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M.A. Muhammad and A. Khan, Curr. Appl. Phys., 14, 716 (2014); https://doi.org/10.1016/j.cap.2014.02.021.
R.N. Panda, J.C. Shih and T.S. Chin, J. Magn. Magn. Mater., 257, 79 (2003); https://doi.org/10.1016/S0304-8853(02)01036-3.
K.B. Modi, U.N. Trivedi, P.U. Shrama, V.K. Lakhani, M.C. Chhantbar, H.H. Joshi, Indian J. Pure Appl. Phys., 44, 165 (2006).
K.B. Modi, S.J. Shah, N.B. Pujara, T.K. Pathak, N.H. Vasoya and I.G. Jhala, J. Mol. Struct., 1049, 250 (2013); https://doi.org/10.1016/j.molstruc.2013.06.051.
R.D. Waldron, Phys. Rev., 99, 1727 (1955); https://doi.org/10.1103/PhysRev.99.1727.
T.T. Srinivasan, C.M. Srivastava, N. Venkataramani and M.J. Patni, Bull. Mater. Sci., 6, 1063 (1984); https://doi.org/10.1007/BF02743958.
H.M. Zaki and H.A. Dawoud, Physica B, 405, 4476 (2010); https://doi.org/10.1016/j.physb.2010.08.018.
S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble and K.M. Jadhav, J. Mol. Struct., 1038, 40 (2013); https://doi.org/10.1016/j.molstruc.2012.12.053.
D.-H. Chen and X.-R. He, Mater. Res. Bull., 36, 1369 (2001); https://doi.org/10.1016/S0025-5408(01)00620-1.
V.V. Awati, S.M. Rathod, S.E. Shirsath and M.L. Mane, J. Alloys Compd., 553, 157 (2013); https://doi.org/10.1016/j.jallcom.2012.11.045.
S. Güner, S. Esir, A. Baykal, A. Demir and Y. Bakis, Superlatt. Microstruct., 74, 184 (2014); https://doi.org/10.1016/j.spmi.2014.06.021.
M.A. Rahman, M.A. Rahman and A.K.M.A. Hossain, J. Magn. Magn. Mater., 369, 168 (2014); https://doi.org/10.1016/j.jmmm.2014.06.033.
L. Vegard, Z. Physik, 5, 17 (1921); https://doi.org/10.1007/BF01349680.
B.P. Ladgaonkar, P.N. Vasambekar and A.S. Vaingankar, J. Mater. Sci. Lett., 19, 1375 (2000); https://doi.org/10.1023/A:1006713518433.
H.A. Jahn and E. Teller, Proc. R. Soc. Lond. A Math. Phys. Sci., 161, 220 (1937); https://doi.org/10.1098/rspa.1937.0142.
M C Chhantbar, U N Trivedi, P V Tanna, H J Shah, R P Vara, H H Joshi and K B Mod, Indian J. Phys., 78A, 321 (2004).
E.W. Gorter, Philips Res. Rep., 9, 295 (1954).
S.A. Mazen, T.A. Elmosalami, ISRN Condens. Matter Phys., Article ID 820726 (2011); https://doi.org/10.5402/2011/820726.
K.B. Modi, M.C. Chhantbar and H.H. Joshi, Ceram. Int., 32, 111 (2006); https://doi.org/10.1016/j.ceramint.2005.01.005.
S.E. Shirsath, S.M. Patange, R.H. Kadam, M.L. Mane and K.M. Jadhav, J. Mol. Struct., 1024, 77 (2012); https://doi.org/10.1016/j.molstruc.2012.05.014.
V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, J. Alloys Compd., 488, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.
S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Varsoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi and K.B. Modi, Indian J. Pure Appl. Phy., 45, 596 (2007).
P.B. Belavi, L.R. Naik and G.N. Chavan, J. Shivaji Univ. (Sci. Technol.), 41, 2 (2014-2015).
V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, J. Alloys Compd., 488, 199 (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.
W.A. Wooster, Rep. Prog. Phys., 16, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302.