Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Extraction, Spectrophotometric Determination of Tungsten(VI) with 3-Hydroxy-2-[1′-phenyl-3′-(p-methylphenyl)-4'-pyrazolyl]-4-oxo-4H-1-benzopyran as Chelating Agent and its in situ Computational Studies
Corresponding Author(s) : N. Agnihotri
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
A simple, fast, selective and sensitive method is developed for the microdetermination of tungsten(VI) with 3-hydroxy-2-[1′-phenyl-3′-(p-methylphenyl)-4′-pyrazolyl]-4-oxo-4H-1-benzopyran (HPMPPB). The reagent forms a 1:4 (M:L) yellow complex in HCl medium which is extractable into chloroform and exhibits maximum absorbance at 415-430 nm. The Beer′s law holds good in tungsten(VI) concentration range of 0.0-2.0 μg mL-1 with molar extinction coefficient and Sandell′s sensitivity of 9.936 × 104 dm3 mol-1 cm-1 and 0.0019 μg W cm-2, respectively at 420 nm. The proposed method is free from the interference of a large number of analytically important elements and shown to give satisfactory results in the analysis of various synthetic and industrial samples of varying composition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Habashi, J. Powder Metall. Min., 6, 166 (2017); https://doi.org/10.4172/2168-9806.1000166.
- E. Lassner and W.D. Schubert, Tungsten and Living Organisms. In: Tungsten, Springer: Boston, MA (1999).
- J. McMaster and J.H. Enemark, Curr. Opin. Chem. Biol., 2, 201 (1998); https://doi.org/10.1016/S1367-5931(98)80061-6.
- R. Hille, Trends Biochem. Sci., 27, 360 (2002); https://doi.org/10.1016/S0968-0004(02)02107-2.
- S.C. Srivastava, S.R. Bhaisare, D.N. Wagh and C.P.S. Iyer, Bull. Mater. Sci., 19, 331 (1996); https://doi.org/10.1007/BF02744670.
- H. Chen, Huaxue Shijie, 41, 488 (2000).
- V.D. Lekova, K.B. Gavazov and A.N. Dimitrov, Chem. Pap., 60, 283 (2006); https://doi.org/10.2478/s11696-006-0049-1.
- J. Rohilla, R.K. Baweja and S. Kumar, Arch. Appl. Sci. Res., 5, 81 (2013).
- S.P. Masti, J. Seetharamappa and M.B. Melwanki, Anal. Sci., 18, 913 (2002); https://doi.org/10.2116/analsci.18.913.
- R. Agnihotri, N. Agnihotri and J.R. Mehta, Bull. Chem. Soc. Jpn., 81, 116 (2008); https://doi.org/10.1246/bcsj.81.116.
- N. Agnihotri and J.R. Mehta, Ann. Chim., 94, 341 (2004); https://doi.org/10.1002/adic.200490039.
- R. Agnihotri, N. Agnihotri and J.R. Mehta, Chem. Anal. (Warsaw), 51, 453 (2006).
- R. Agnihotri, R. Kamal, N. Agnihotri and J.R. Mehta, Color. Technol., 124, 379 (2008); https://doi.org/10.1111/j.1478-4408.2008.00167.x.
- J. Algar and J.P. Flynn, Proc. Roy. Irish Acad., 42, 1 (1934).
- T. Oyamada, J. Chem. Soc. (Japan), 55, 1256 (1934).
- A. Ringbom, Z. Anal. Chem., 115, 332 (1938); https://doi.org/10.1007/BF01753937.
- P. Job, Ann. Chim., 9, 113 (1928).
- W.C. Vosburgh and G.R. Cooper, J. Am. Chem. Soc., 63, 437 (1941); https://doi.org/10.1021/ja01847a025.
- J.H. Yoe and A.L. Jones, Ind. Eng. Chem. Anal. Ed., 16, 111 (1944); https://doi.org/10.1021/i560126a015.
- P. Rathi, K. Sharma and D.P. Singh, Spectrochim. Acta A, 130, 72 (2014); https://doi.org/10.1016/j.saa.2014.03.046.
References
F. Habashi, J. Powder Metall. Min., 6, 166 (2017); https://doi.org/10.4172/2168-9806.1000166.
E. Lassner and W.D. Schubert, Tungsten and Living Organisms. In: Tungsten, Springer: Boston, MA (1999).
J. McMaster and J.H. Enemark, Curr. Opin. Chem. Biol., 2, 201 (1998); https://doi.org/10.1016/S1367-5931(98)80061-6.
R. Hille, Trends Biochem. Sci., 27, 360 (2002); https://doi.org/10.1016/S0968-0004(02)02107-2.
S.C. Srivastava, S.R. Bhaisare, D.N. Wagh and C.P.S. Iyer, Bull. Mater. Sci., 19, 331 (1996); https://doi.org/10.1007/BF02744670.
H. Chen, Huaxue Shijie, 41, 488 (2000).
V.D. Lekova, K.B. Gavazov and A.N. Dimitrov, Chem. Pap., 60, 283 (2006); https://doi.org/10.2478/s11696-006-0049-1.
J. Rohilla, R.K. Baweja and S. Kumar, Arch. Appl. Sci. Res., 5, 81 (2013).
S.P. Masti, J. Seetharamappa and M.B. Melwanki, Anal. Sci., 18, 913 (2002); https://doi.org/10.2116/analsci.18.913.
R. Agnihotri, N. Agnihotri and J.R. Mehta, Bull. Chem. Soc. Jpn., 81, 116 (2008); https://doi.org/10.1246/bcsj.81.116.
N. Agnihotri and J.R. Mehta, Ann. Chim., 94, 341 (2004); https://doi.org/10.1002/adic.200490039.
R. Agnihotri, N. Agnihotri and J.R. Mehta, Chem. Anal. (Warsaw), 51, 453 (2006).
R. Agnihotri, R. Kamal, N. Agnihotri and J.R. Mehta, Color. Technol., 124, 379 (2008); https://doi.org/10.1111/j.1478-4408.2008.00167.x.
J. Algar and J.P. Flynn, Proc. Roy. Irish Acad., 42, 1 (1934).
T. Oyamada, J. Chem. Soc. (Japan), 55, 1256 (1934).
A. Ringbom, Z. Anal. Chem., 115, 332 (1938); https://doi.org/10.1007/BF01753937.
P. Job, Ann. Chim., 9, 113 (1928).
W.C. Vosburgh and G.R. Cooper, J. Am. Chem. Soc., 63, 437 (1941); https://doi.org/10.1021/ja01847a025.
J.H. Yoe and A.L. Jones, Ind. Eng. Chem. Anal. Ed., 16, 111 (1944); https://doi.org/10.1021/i560126a015.
P. Rathi, K. Sharma and D.P. Singh, Spectrochim. Acta A, 130, 72 (2014); https://doi.org/10.1016/j.saa.2014.03.046.