Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Synthesis of Large Area MoO2 Nanosheets and their Photocatalytic Activity
Corresponding Author(s) : S. Ananda
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
Monoclinic molybdenum dioxide (MoO2) nanosheets have been successfully synthesized by a simple electrochemical method. The as prepared MoO2 was used as a photocatalyst for the photocatalytic degradation of Indigo carmine dye under various experimental conditions and also as oxygen evaluation catalyst for the decomposition of potassium permanganate. Initially, as-prepared MoO2 was characterized by different techniques namely, X-ray diffraction, scanning electron microscopy FE-SEM, UV-visible and FT-IR techniques, so as to study and revealed the morphological, structural, functional and optical properties. The results revealed that photocatalyst has nanosheets morphology with thickness less than 10 nm and it has also monoclinic crystal structure with an average crystallite size of 27 nm. The optical properties studies showed that band gap (Eg) value of MoO2 (3.85 eV) lies in the UV region and can be a suitable candidate for UV light photocatalytic application. In addition, the experimental results revealed an excellent photocatalytic performance of MoO2 in the degradation of Indigo carmine under UV light irradiation and also for the decomposition of KMnO4 by oxygen evaluation reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.A. Ellefson, O. Marin-Flores, S. Ha and M.G. Norton, J. Mater. Sci., 47, 2057 (2012); https://doi.org/10.1007/s10853-011-5918-5.
- O. Marin-Flores, L. Scudiero and S. Ha, Surf. Sci., 603, 2327 (2009); https://doi.org/10.1016/j.susc.2009.05.010.
- X. Yang, W. Chen, Y. Liu, Y. Li and Y. Qi, J. Mater. Sci. Mater. Electron., 28, 1740 (2017); https://doi.org/10.1007/s10854-016-5720-x.
- M. Kumar Trivedi, Int. J. Mater. Sci. Appl., 4, 390 (2015).
- J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts and N. Fairley, Appl. Surf. Sci., 326, 151 (2015); https://doi.org/10.1016/j.apsusc.2014.11.077.
- P. Niu, L. Zhang, G. Liu and H.M. Cheng, Adv. Funct. Mater., 22, 4763 (2012); https://doi.org/10.1002/adfm.201200922.
- Y. Zhao, Y. Zhang, Z. Yang, Y. Yan and K. Sun, Sci. Technol. Adv. Mater., 14, 043501 (2013); https://doi.org/10.1088/1468-6996/14/4/043501.
- B. Hu, L. Mai, W. Chen and F. Yang, ACS Nano, 3, 478 (2009); https://doi.org/10.1021/nn800844h.
- Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.S. Hu, K.R. Heier, L. Chen, R. Seshadri and G.D. Stucky, Nano Lett., 9, 4215 (2009); https://doi.org/10.1021/nl902423a.
- N. Duktiene and D. Sinkeviiute, J. Solid State Electrochem., 17, 1175 (2013).
- J. Ni, Y. Zhao, L. Li and L. Mai, Nano Energy, 11, 129 (2015); https://doi.org/10.1016/j.nanoen.2014.10.027.
- N. Dukstiene, D. Sinkeviciute and A. Guobiene, Open Chem., 10, 1106 (2012); https://doi.org/10.2478/s11532-012-0012-7.
- R. Naouel, F. Touati and N. Gharbi, E-J. Chem., 9, 233 (2012); https://doi.org/10.1155/2012/506572.
- D. Koziej, M.D. Rossell, B. Ludi, A. Hintennach, P. Novák, J.D. Grunwaldt and M. Niederberger, Small, 7, 377 (2011); https://doi.org/10.1002/smll.201001606.
- D. Sinkeviciute, J. Baltrusaitis and N. Dukstiene, J. Solid State Electrochem., 15, 711 (2011); https://doi.org/10.1007/s10008-010-1137-2.
- L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo and H. Liu, Mater. Today, 14, 346 (2011); https://doi.org/10.1016/S1369-7021(11)70165-1.
- H. Zhang, L. Zeng, X. Wu, L. Lian and M. Wei, J. Alloys Compd., 580, 358 (2013); https://doi.org/10.1016/j.jallcom.2013.06.100.
- Z. Xiang, Q. Zhang, Z. Zhang, X. Xu and Q. Wang, Ceram. Int., 41, 977 (2015); https://doi.org/10.1016/j.ceramint.2014.09.017.
- X. Liu, Y. He, S. Wang and Q. Zhang, J. Alloys Compd., 509, S408 (2011); https://doi.org/10.1016/j.jallcom.2011.01.089.
- H. He, Y. Man, J. Yang, J. Xie and M. Xu, R. Soc. Open Sci., 4, 170892 (2017); https://doi.org/10.1098/rsos.170892.
- C. Tan, Z. Lai and H. Zhang, Adv. Mater., 29, 1701392 (2017); https://doi.org/10.1002/adma.201701392.
- A. Ajmal, I. Majeed, R.N. Malik, H. Idriss and M.A. Nadeem, RSC Advances, 4, 37003 (2014); https://doi.org/10.1039/C4RA06658H.
- A.K. Subramani, K. Byrappa, S. Ananda, K.M. Lokanatha Rai, C. Ranganathaiah and M. Yoshimura, Bull. Mater. Sci., 30, 37 (2007); https://doi.org/10.1007/s12034-007-0007-8.
- S. Barisci, H. Inan, O. Turkay, A. Dimoglo and D. Erol, J. Appl. Solut. Chem. Model., 6, 75 (2017); https://doi.org/10.6000/1929-5030.2017.06.02.3.
- H. Zeng, X. Liu, T. Wei, X. Li, T. Liu, X. Min, Q. Zhu, X. Zhao and J. Li, RSC Adv., 7, 23787 (2017); https://doi.org/10.1039/C7RA02761C.
- L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu and R. Holze, J. Power Sources, 179, 357 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.099.
- R.S. Patil, M.D. Uplane and P.S. Patil, Appl. Surf. Sci., 252, 8050 (2006); https://doi.org/10.1016/j.apsusc.2005.10.016.
- N. Dukstiene, L. Tatariskinaite and M. Andrulevicius, Mater. Sci.-Poland, 28, 93 (2010).
- Z. Liang, Stochastic Anal. Appl., 24, 501 (2006); https://doi.org/10.1080/07362990600629017.
- J. Bi, C. Yang and H. Wu, Ceram. Int., 43, 92 (2017); https://doi.org/10.1016/j.ceramint.2016.09.115.
- D. Kandi, S. Martha, A. Thirumurugan and K.M. Parida, J. Phys. Chem. C, 121, 4834 (2017); https://doi.org/10.1021/acs.jpcc.6b11938.
- K.M. Reza, A.W.S. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y.
- A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, G.K. Jayaprakash, C. Cheng, S.S. Swamy and K. Byrappa, Ceram. Int., 44, 7202 (2018); https://doi.org/10.1016/j.ceramint.2018.01.167.
- K.R. Raksha, S. Ananda and N.M. Madegowda, J. Mol. Catal. Chem., 396, 319 (2015); https://doi.org/10.1016/j.molcata.2014.10.005.
References
C.A. Ellefson, O. Marin-Flores, S. Ha and M.G. Norton, J. Mater. Sci., 47, 2057 (2012); https://doi.org/10.1007/s10853-011-5918-5.
O. Marin-Flores, L. Scudiero and S. Ha, Surf. Sci., 603, 2327 (2009); https://doi.org/10.1016/j.susc.2009.05.010.
X. Yang, W. Chen, Y. Liu, Y. Li and Y. Qi, J. Mater. Sci. Mater. Electron., 28, 1740 (2017); https://doi.org/10.1007/s10854-016-5720-x.
M. Kumar Trivedi, Int. J. Mater. Sci. Appl., 4, 390 (2015).
J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts and N. Fairley, Appl. Surf. Sci., 326, 151 (2015); https://doi.org/10.1016/j.apsusc.2014.11.077.
P. Niu, L. Zhang, G. Liu and H.M. Cheng, Adv. Funct. Mater., 22, 4763 (2012); https://doi.org/10.1002/adfm.201200922.
Y. Zhao, Y. Zhang, Z. Yang, Y. Yan and K. Sun, Sci. Technol. Adv. Mater., 14, 043501 (2013); https://doi.org/10.1088/1468-6996/14/4/043501.
B. Hu, L. Mai, W. Chen and F. Yang, ACS Nano, 3, 478 (2009); https://doi.org/10.1021/nn800844h.
Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.S. Hu, K.R. Heier, L. Chen, R. Seshadri and G.D. Stucky, Nano Lett., 9, 4215 (2009); https://doi.org/10.1021/nl902423a.
N. Duktiene and D. Sinkeviiute, J. Solid State Electrochem., 17, 1175 (2013).
J. Ni, Y. Zhao, L. Li and L. Mai, Nano Energy, 11, 129 (2015); https://doi.org/10.1016/j.nanoen.2014.10.027.
N. Dukstiene, D. Sinkeviciute and A. Guobiene, Open Chem., 10, 1106 (2012); https://doi.org/10.2478/s11532-012-0012-7.
R. Naouel, F. Touati and N. Gharbi, E-J. Chem., 9, 233 (2012); https://doi.org/10.1155/2012/506572.
D. Koziej, M.D. Rossell, B. Ludi, A. Hintennach, P. Novák, J.D. Grunwaldt and M. Niederberger, Small, 7, 377 (2011); https://doi.org/10.1002/smll.201001606.
D. Sinkeviciute, J. Baltrusaitis and N. Dukstiene, J. Solid State Electrochem., 15, 711 (2011); https://doi.org/10.1007/s10008-010-1137-2.
L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo and H. Liu, Mater. Today, 14, 346 (2011); https://doi.org/10.1016/S1369-7021(11)70165-1.
H. Zhang, L. Zeng, X. Wu, L. Lian and M. Wei, J. Alloys Compd., 580, 358 (2013); https://doi.org/10.1016/j.jallcom.2013.06.100.
Z. Xiang, Q. Zhang, Z. Zhang, X. Xu and Q. Wang, Ceram. Int., 41, 977 (2015); https://doi.org/10.1016/j.ceramint.2014.09.017.
X. Liu, Y. He, S. Wang and Q. Zhang, J. Alloys Compd., 509, S408 (2011); https://doi.org/10.1016/j.jallcom.2011.01.089.
H. He, Y. Man, J. Yang, J. Xie and M. Xu, R. Soc. Open Sci., 4, 170892 (2017); https://doi.org/10.1098/rsos.170892.
C. Tan, Z. Lai and H. Zhang, Adv. Mater., 29, 1701392 (2017); https://doi.org/10.1002/adma.201701392.
A. Ajmal, I. Majeed, R.N. Malik, H. Idriss and M.A. Nadeem, RSC Advances, 4, 37003 (2014); https://doi.org/10.1039/C4RA06658H.
A.K. Subramani, K. Byrappa, S. Ananda, K.M. Lokanatha Rai, C. Ranganathaiah and M. Yoshimura, Bull. Mater. Sci., 30, 37 (2007); https://doi.org/10.1007/s12034-007-0007-8.
S. Barisci, H. Inan, O. Turkay, A. Dimoglo and D. Erol, J. Appl. Solut. Chem. Model., 6, 75 (2017); https://doi.org/10.6000/1929-5030.2017.06.02.3.
H. Zeng, X. Liu, T. Wei, X. Li, T. Liu, X. Min, Q. Zhu, X. Zhao and J. Li, RSC Adv., 7, 23787 (2017); https://doi.org/10.1039/C7RA02761C.
L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu and R. Holze, J. Power Sources, 179, 357 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.099.
R.S. Patil, M.D. Uplane and P.S. Patil, Appl. Surf. Sci., 252, 8050 (2006); https://doi.org/10.1016/j.apsusc.2005.10.016.
N. Dukstiene, L. Tatariskinaite and M. Andrulevicius, Mater. Sci.-Poland, 28, 93 (2010).
Z. Liang, Stochastic Anal. Appl., 24, 501 (2006); https://doi.org/10.1080/07362990600629017.
J. Bi, C. Yang and H. Wu, Ceram. Int., 43, 92 (2017); https://doi.org/10.1016/j.ceramint.2016.09.115.
D. Kandi, S. Martha, A. Thirumurugan and K.M. Parida, J. Phys. Chem. C, 121, 4834 (2017); https://doi.org/10.1021/acs.jpcc.6b11938.
K.M. Reza, A.W.S. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y.
A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, G.K. Jayaprakash, C. Cheng, S.S. Swamy and K. Byrappa, Ceram. Int., 44, 7202 (2018); https://doi.org/10.1016/j.ceramint.2018.01.167.
K.R. Raksha, S. Ananda and N.M. Madegowda, J. Mol. Catal. Chem., 396, 319 (2015); https://doi.org/10.1016/j.molcata.2014.10.005.