Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-Chemical Studies of Chitosan Derivatives and Optimization of Reaction Conditions using RSM Design
Corresponding Author(s) : Tungabidya Maharana
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
In this work, the chitosan flake was converted to carboxymethyl chitosan (CMCS) by carboxymethylation process using monochloroacetic acid in alkaline condition. The structure of carboxymethyl chitosan was confirmed by NMR, FT-IR, XRD, TGA and SEM techniques. The average molecular weight of carboxymethyl chitosan was obtained by viscometry method. The carboxymethylation reaction of chitosan was optimized for the reaction time, reaction temperature, amount of chitosan, amount of monochloroacetic acid. Response surface methodology (RSM) was used to analyze degree of substitution, degree of acetylation and yield with respect to reaction conditions. At the optimization reaction condition the degree of substitution, degree of acetylation (%) and yield (%) values are 0.56, 33.99 and 78.2, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Saboktakin, R.M. Tabatabaie, A. Maharramov and M.A. Ramazanov, Carbohydr. Polym., 81, 726 (2010); https://doi.org/10.1016/j.carbpol.2010.03.047.
- J. Wang, J.-S. Chen, J.-Y. Zong, D. Zhao, F. Li, R.-X. Zhuo and S.-X. Cheng, J. Phys. Chem. C, 114, 18940 (2010); https://doi.org/10.1021/jp105906p.
- B. Shi, Z. Shen, H. Zhang, J. Bi and S. Dai, Biomacromolecules, 13, 146 (2012); https://doi.org/10.1021/bm201380e.
- M. Periayah, A.S. Halim, S. Gomathysankar, A.A. Ahmad Sukari,, A.Z. Mat Saad, A.H. Abdul Rashid, Z. Ujang and N.Z. Mohd Muslim, Int. J. Basic Appl. Sci., 3, 532 (2014); https://doi.org/10.14419/ijbas.v3i4.3548.
- M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001.
- A. Teotia, S. Ikram and B. Gupta, Polym. Bull., 69, 175 (2012); https://doi.org/10.1007/s00289-010-0415-6.
- N.A. Mohamed and N.A.A. El-Ghany, Int. J. Bio. Macromol., 50, 1280 (2012); https://doi.org/10.1016/j.ijbiomac.2012.03.011.
- T.-Y. Liu, S.-Y. Chen, Y.-L. Lin and D.-M. Liu, Langmuir, 22, 9740 (2006); https://doi.org/10.1021/la061471n.
- J. Jin, Z. Ji, M. Xu, C. Liu, X. Ye, W. Zhang, S. Li, D. Wang, W. Zhang, J. Chen, F. Ye and Z. Lv, ACS Biomater. Sci. Eng., 4, 2541 (2018); https://doi.org/10.1021/acsbiomaterials.8b00453.
- W. Dong, B. Han, Y. Feng, F. Song, J. Chang, H. Jiang, Y. Tang and W. Liu, Biomacromolecules, 11, 1527 (2010); https://doi.org/10.1021/bm100158p.
- S. Mantri, A. Routaray, N. Nath, A.K. Sutar and T. Maharana, Polym. Int., 66, 313 (2017); https://doi.org/10.1002/pi.5268.
- A. Routaray, S. Mantri, N. Nath, A.K. Sutar and T. Maharana, Polyhedron, 119, 335 (2016); https://doi.org/10.1016/j.poly.2016.08.032.
- S. Vaghani, S. Vasanti, K. Chaturvedi, C.S. Satish and N.P. Jivani, Pharm. Dev. Technol., 15, 154 (2010); https://doi.org/10.3109/10837450903085392.
- G.A.F. Roberts and J.G. Domszy, Int. J. Biol. Macromol., 4, 374 (1982); https://doi.org/10.1016/0141-8130(82)90074-5.
- M. Rinaudo, M. Milas and P.L. Dung, Int. J. Biol. Macromol., 15, 281 (1993); https://doi.org/10.1016/0141-8130(93)90027-J.
- A. Zamani, D. Henriksson and M.J. Taherzadeh, Carbohydr Polym., 80, 1091 (2010). https://doi.org/10.1016/j.carbpol.2010.01.029.
- H.C. Ge and D.K. Luo, Carbohydr. Res., 340, 1351 (2005); https://doi.org/10.1016/j.carres.2005.02.025.
- E.M. El-Nesr, A.I. Raafat, S.M. Nasef, E.A. Soliman and El-Sayed A. Hegazy, Arab. J. Nucl. Sci. Appl., 47, 14 (2014).
- T.D. Farahani, E.V. Farahani and H. Mirzadeh, Iran. Polym. J., 15, 405 (2006).
- T. Maharana, Ph.D. Thesis, Synthesis and Characterizations of Poly- (lactic acid) and its Nanoparticles, Indian Institute of Technology Roorkee, Roorkee, India (2010).
- T. Maharana, B. Mohanty and Y.S. Negi, Int. J. Green Nanotechnol.: Phys. Chem., 2, 100 (2010); https://doi.org/10.1080/19430876.2010.532462.
- C.J. Tijsen, H.J. Scherpenkate, E.J. Stamhuis and A.A.C.M. Beenackers, Chem. Eng. Sci., 54, 2765 (1999); https://doi.org/10.1016/S0009-2509(98)00321-2.
- S.S. Vaghani, M.M. Patel, C.S. Satish, K.M. Patel and N.P. Jivani, Bull. Mater. Sci., 35, 1133 (2012).
- S. Yu, J. Du, Y. Zheng and L. Yan, J. Appl. Polym. Sci., 106, 4098 (2007); https://doi.org/10.1002/app.26947.
- J. Liu, J.-F. Lu, J. Kan, Y.-Q. Tang and C.-H. Jin, Int. J. Biol. Macromol., 62, 85 (2013); https://doi.org/10.1016/j.ijbiomac.2013.08.040.
- F.R. de Abreu and S.P. Campana-Filho, Carbohyd. Polym., 75, 214 (2009); https://doi.org/10.1016/j.carbpol.2008.06.009.
- V.K. Mourya, N.N. Inamdara and Ashutosh Tiwari, Adv. Mater. Lett., 1, 11 (2010); https://doi.org/10.5185/amlett.2010.3108.
- Y.-C. Huang and T.-H. Kuo, Food Hydrocoll., 53, 261 (2016); https://doi.org/10.1016/j.foodhyd.2015.02.006.
- J.M. Joshi and V.K. Sinha, Polym. Res., 13, 387 (2006); https://doi.org/10.1007/s10965-006-9056-8.
- T. Baran, A. Mentes and H. Arslan, Int. J. Biol. Macromol., 72, 94 (2015); https://doi.org/10.1016/j.ijbiomac.2014.07.029.
- P. Katugampola, C. Winstead and A. Adeleke, Int. J. Pharm. Sci. Invent., 3, 42 (2014).
- C. Sun, J.S. Lee and M. Zhang, Adv, Drug Deliv. Rev., 60, 1252 (2008); https://doi.org/10.1016/j.addr.2008.03.018.
- S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu and H.W. Sung, J. Control. Rel., 96, 285 (2004); https://doi.org/10.1016/j.jconrel.2004.02.002.
- A. Casaburi, U.M. Rojo, P. Cerrutti, A. Vazquez and M.L. Foresti, Food Hydrocoll., 75, 147 (2018); https://doi.org/10.1016/j.foodhyd.2017.09.002.
- Z. Li, Y. Wang, Y. Pei, W. Xiong, W. Xu, B. Li and J. Li, Food Hydrocoll., 62, 222 (2017); https://doi.org/10.1016/j.foodhyd.2016.07.020.
- L. Peirez-Ailvarez, L. Ruiz-Rubio and J.L. Vilas-Vilela, J. Chem. Educ., 95, 1022 (2018); https://doi.org/10.1021/acs.jchemed.7b00902.
- D. Bas and I.H. Boyac, J. Food Eng., 78, 836 (2007); https://doi.org/10.1016/j.jfoodeng.2005.11.024.
References
M.R. Saboktakin, R.M. Tabatabaie, A. Maharramov and M.A. Ramazanov, Carbohydr. Polym., 81, 726 (2010); https://doi.org/10.1016/j.carbpol.2010.03.047.
J. Wang, J.-S. Chen, J.-Y. Zong, D. Zhao, F. Li, R.-X. Zhuo and S.-X. Cheng, J. Phys. Chem. C, 114, 18940 (2010); https://doi.org/10.1021/jp105906p.
B. Shi, Z. Shen, H. Zhang, J. Bi and S. Dai, Biomacromolecules, 13, 146 (2012); https://doi.org/10.1021/bm201380e.
M. Periayah, A.S. Halim, S. Gomathysankar, A.A. Ahmad Sukari,, A.Z. Mat Saad, A.H. Abdul Rashid, Z. Ujang and N.Z. Mohd Muslim, Int. J. Basic Appl. Sci., 3, 532 (2014); https://doi.org/10.14419/ijbas.v3i4.3548.
M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001.
A. Teotia, S. Ikram and B. Gupta, Polym. Bull., 69, 175 (2012); https://doi.org/10.1007/s00289-010-0415-6.
N.A. Mohamed and N.A.A. El-Ghany, Int. J. Bio. Macromol., 50, 1280 (2012); https://doi.org/10.1016/j.ijbiomac.2012.03.011.
T.-Y. Liu, S.-Y. Chen, Y.-L. Lin and D.-M. Liu, Langmuir, 22, 9740 (2006); https://doi.org/10.1021/la061471n.
J. Jin, Z. Ji, M. Xu, C. Liu, X. Ye, W. Zhang, S. Li, D. Wang, W. Zhang, J. Chen, F. Ye and Z. Lv, ACS Biomater. Sci. Eng., 4, 2541 (2018); https://doi.org/10.1021/acsbiomaterials.8b00453.
W. Dong, B. Han, Y. Feng, F. Song, J. Chang, H. Jiang, Y. Tang and W. Liu, Biomacromolecules, 11, 1527 (2010); https://doi.org/10.1021/bm100158p.
S. Mantri, A. Routaray, N. Nath, A.K. Sutar and T. Maharana, Polym. Int., 66, 313 (2017); https://doi.org/10.1002/pi.5268.
A. Routaray, S. Mantri, N. Nath, A.K. Sutar and T. Maharana, Polyhedron, 119, 335 (2016); https://doi.org/10.1016/j.poly.2016.08.032.
S. Vaghani, S. Vasanti, K. Chaturvedi, C.S. Satish and N.P. Jivani, Pharm. Dev. Technol., 15, 154 (2010); https://doi.org/10.3109/10837450903085392.
G.A.F. Roberts and J.G. Domszy, Int. J. Biol. Macromol., 4, 374 (1982); https://doi.org/10.1016/0141-8130(82)90074-5.
M. Rinaudo, M. Milas and P.L. Dung, Int. J. Biol. Macromol., 15, 281 (1993); https://doi.org/10.1016/0141-8130(93)90027-J.
A. Zamani, D. Henriksson and M.J. Taherzadeh, Carbohydr Polym., 80, 1091 (2010). https://doi.org/10.1016/j.carbpol.2010.01.029.
H.C. Ge and D.K. Luo, Carbohydr. Res., 340, 1351 (2005); https://doi.org/10.1016/j.carres.2005.02.025.
E.M. El-Nesr, A.I. Raafat, S.M. Nasef, E.A. Soliman and El-Sayed A. Hegazy, Arab. J. Nucl. Sci. Appl., 47, 14 (2014).
T.D. Farahani, E.V. Farahani and H. Mirzadeh, Iran. Polym. J., 15, 405 (2006).
T. Maharana, Ph.D. Thesis, Synthesis and Characterizations of Poly- (lactic acid) and its Nanoparticles, Indian Institute of Technology Roorkee, Roorkee, India (2010).
T. Maharana, B. Mohanty and Y.S. Negi, Int. J. Green Nanotechnol.: Phys. Chem., 2, 100 (2010); https://doi.org/10.1080/19430876.2010.532462.
C.J. Tijsen, H.J. Scherpenkate, E.J. Stamhuis and A.A.C.M. Beenackers, Chem. Eng. Sci., 54, 2765 (1999); https://doi.org/10.1016/S0009-2509(98)00321-2.
S.S. Vaghani, M.M. Patel, C.S. Satish, K.M. Patel and N.P. Jivani, Bull. Mater. Sci., 35, 1133 (2012).
S. Yu, J. Du, Y. Zheng and L. Yan, J. Appl. Polym. Sci., 106, 4098 (2007); https://doi.org/10.1002/app.26947.
J. Liu, J.-F. Lu, J. Kan, Y.-Q. Tang and C.-H. Jin, Int. J. Biol. Macromol., 62, 85 (2013); https://doi.org/10.1016/j.ijbiomac.2013.08.040.
F.R. de Abreu and S.P. Campana-Filho, Carbohyd. Polym., 75, 214 (2009); https://doi.org/10.1016/j.carbpol.2008.06.009.
V.K. Mourya, N.N. Inamdara and Ashutosh Tiwari, Adv. Mater. Lett., 1, 11 (2010); https://doi.org/10.5185/amlett.2010.3108.
Y.-C. Huang and T.-H. Kuo, Food Hydrocoll., 53, 261 (2016); https://doi.org/10.1016/j.foodhyd.2015.02.006.
J.M. Joshi and V.K. Sinha, Polym. Res., 13, 387 (2006); https://doi.org/10.1007/s10965-006-9056-8.
T. Baran, A. Mentes and H. Arslan, Int. J. Biol. Macromol., 72, 94 (2015); https://doi.org/10.1016/j.ijbiomac.2014.07.029.
P. Katugampola, C. Winstead and A. Adeleke, Int. J. Pharm. Sci. Invent., 3, 42 (2014).
C. Sun, J.S. Lee and M. Zhang, Adv, Drug Deliv. Rev., 60, 1252 (2008); https://doi.org/10.1016/j.addr.2008.03.018.
S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu and H.W. Sung, J. Control. Rel., 96, 285 (2004); https://doi.org/10.1016/j.jconrel.2004.02.002.
A. Casaburi, U.M. Rojo, P. Cerrutti, A. Vazquez and M.L. Foresti, Food Hydrocoll., 75, 147 (2018); https://doi.org/10.1016/j.foodhyd.2017.09.002.
Z. Li, Y. Wang, Y. Pei, W. Xiong, W. Xu, B. Li and J. Li, Food Hydrocoll., 62, 222 (2017); https://doi.org/10.1016/j.foodhyd.2016.07.020.
L. Peirez-Ailvarez, L. Ruiz-Rubio and J.L. Vilas-Vilela, J. Chem. Educ., 95, 1022 (2018); https://doi.org/10.1021/acs.jchemed.7b00902.
D. Bas and I.H. Boyac, J. Food Eng., 78, 836 (2007); https://doi.org/10.1016/j.jfoodeng.2005.11.024.