Copyright (c) 2025 David Shooto, Patience Thabede

This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Ammonium Ions from Water using Activated Carbon Derived from Garlic Waste
Corresponding Author(s) : N.D. Shooto
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
Water contaminated with ammonium (NH4+) is associated with many adverse effects on humans, aquatic organisms and the environment. The removal of NH4+ from aquatic sources is essential to support life. This study used modified garlic basal plate waste to remove NH4+ from polluted water. Garlic waste was carbonized at 450 ºC and chemically activated with NaOH and H3PO4. After activation, the samples were characterized using SEM, EDX, TEM, XRD, FTIR and Raman spectroscopy. The SEM images showed that the inner surface was exposed and was heterogeneous and, porous with cavities of different sizes and shapes. The elemental constituents of the materials are carbon (C), oxygen (O) and heteroatoms in trace amounts. FTIR analysis showed that the materials have many functional groups, such as –OH (3250 cm–1), –CH (2916 cm–1), –C=C and –NH2 groups (1658 cm–1), –OH (1425 cm–1) and –CO (1000 cm–1). Equilibrium studies indicated that the data fit the nonlinear Freundlich model, suggesting that the uptake represents multilayer adsorption due to different active sites on the adsorbent with unequal energy levels. The Freundlich constant (n) values were between 4.276 and 5.902, indicating that the uptake was favourable. The contact time effect showed three different phases of adsorption: a strong uptake, a steady state of adsorption and a plateau. The data for the contact time corresponded to the pseudo-second order kinetic model. The ΔHº values ranged from (-1.27 to -5.04 KJ/mol), indicating that the uptake was dominated by physical adsorption, but to some extent other mechanisms were partially involved in the uptake. The values of ΔSº and ΔGº were also negative, indicating that the adsorption was spontaneous and only partially random. The optimal conditions for the uptake of NH4+ using a working standard with an initial concentration of 100 mg/L were a solution pH of 10 and a temperature of 298 K. Under these conditions, the adsorption capacities for untreated carbon from garlic basal plate (CGBP), acid activated garlic basal plate (AGBP) and base activated garlic basal plate (BGBP) were 25.09, 37.04 and 40.11 mg/g, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.R. Karri, J.N. Sahu and V. Chimmiri, J. Mol. Liq., 261, 21 (2018); https://doi.org/10.1016/j.molliq.2018.03.120
- A. Omar, F. Almomani, H. Qiblawey and K. Rasool, Sustainability, 16, 2112 (2024); https://doi.org/10.3390/su16052112
- J. Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li and P.R. Teasdale, J. Environ. Sci. (China), 63, 174 (2018); https://doi.org/10.1016/j.jes.2017.09.009
- H.W. Paerl, T.G. Otten and R. Kudela, Environ. Sci. Technol., 52, 5519 (2018); https://doi.org/10.1021/acs.est.7b05950
- World Health Organization, Guidelines for Drinking-Water Quality, 2nd ed., vol. 2: Health Criteria and Other Supporting Information. Geneva: World Health Organization (1996).
- J. Lan, P. Liu, X. Hu and S. Zhu, Water, 16, 2525 (2024); https://doi.org/10.3390/w16172525
- S. Dasarathy, R.P. Mookerjee, V. Rackayova, V. Rangroo Thrane, B. Vairappan, P. Ott and C.F. Rose, Metab. Brain Dis., 32, 529 (2017); https://doi.org/10.1007/s11011-016-9938-3
- X. Zeng, R. Liu, Y. Li, J. Li, Q. Zhao, X. Li and J. Bao, Ecotoxicol. Environ. Saf., 217, 112203 (2021); https://doi.org/10.1016/j.ecoenv.2021.112203
- P.M. Thabede, N.D. Shooto and E.B. Naidoo, Asian J. Chem., 33, 471 (2021); https://doi.org/10.14233/ajchem.2021.23021
- P.M. Thabede, N.D. Shooto, T. Xaba and E.B. Naidoo, Asian J. Chem., 32, 1361 (2020); https://doi.org/10.14233/ajchem.2020.22597
- B.R. Mphuthi, P.M. Thabede, M.E. Monapathi and N.D. Shooto, Case Stud. Chem. Environ. Eng., 8, 100436 (2023); https://doi.org/10.1016/j.cscee.2023.100436
- R.S. Riseh, M.G. Vazvani, M. Hassanisaadi and V.K. Thakur, Ind. Crops Prod., 208, 117904 (2024); https://doi.org/10.1016/j.indcrop.2023.117904
- N. Mabungela, N.D. Shooto, E.D. Dikio, S.J. Modise, M.E. Monapathi, F.M. Mtunzi, T. Xaba and E.B. Naidoo, Environ. Chem. Ecotoxicol., 4, 171 (2022); https://doi.org/10.1016/j.enceco.2022.09.001
- N.D. Shooto and E.B. Naidoo, Asian J. Chem., 31, 2249 (2019); https://doi.org/10.14233/ajchem.2019.22051
- N.D. Shooto, Desalination Water Treat., 320, 100812 (2024); https://doi.org/10.1016/j.dwt.2024.100812
- J. Ansary, T.Y. Forbes-Hernandez, E. Gil, D. Cianciosi, J. Zhang, M. Elexpuru-Zabaleta, J. Simal-Gandara, F. Giampieri and M. Battino, Antioxidants, 9, 619 (2020); https://doi.org/10.3390/antiox9070619
- A.M. Aljeboree, A.Y. Al-Baitai, S.M. Abdalhadi and A.F. Alkaim, Egypt. J. Chem., 64, 2873 (2021); https://doi.org/10.21608/ejchem.2021.55274.3159
- A.M. Aljeboree, A.F. Alkaim and A.H. Al-Dujaili, Desalination Water Treat., 53, 3656 (2015); https://doi.org/10.1080/19443994.2013.877854
- A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, 3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
- S. Liang, X. Guo and Q. Tian, Desalination Water Treat., 51, 7166 (2013); https://doi.org/10.1080/19443994.2013.769919
- M.S. Abu-Shahba, M.M. Mansour, H.I. Mohamed and M.R. Sofy, Sci. Hortic., 293, 110727 (2022); https://doi.org/10.1016/j.scienta.2021.110727
- Z.M. Saigl and E.E. Aloufi, Desalination Water Treat., 294, 149 (2023); https://doi.org/10.5004/dwt.2023.29569
- Q. Chang, P. Li, Y. Han, X. Guan, J. Xiong, Q. Li, H. Zhang, K. Huang, X. Zhang, H. Xie and T. Qi, J. Environ. Chem. Eng., 11, 109997 (2023); https://doi.org/10.1016/j.jece.2023.109997
- P. Muthamilselvi, R. Karthikeyan and B.S.M. Kumar, Desalination Water Treat., 57, 2089 (2016); https://doi.org/10.1080/19443994.2014.979237
- B.H. Hameed and A.A. Ahmad, J. Hazard. Mater., 164, 870 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.084
- M.F. Elshahawy, N.A. Ahmed and G.A. Mahmoud, Mater. Chem. Phys., 321, 129487 (2024); https://doi.org/10.1016/j.matchemphys.2024.129487
- D. Pathania, V.S. Bhat, J. Mannekote Shivanna, G. Sriram, M. Kurkuri and G. Hegde, Spectrochim. Acta A Mol. Biomol. Spectrosc., 276, 121197 (2022); https://doi.org/10.1016/j.saa.2022.121197
- Y. Zhao, L. Zhu, W. Li, J. Liu, X. Liu and K. Huang, J. Mol. Liq., 293, 111516 (2019); https://doi.org/10.1016/j.molliq.2019.111516
- Y. Zhao, X. Liu, W. Li, K. Huang, H. Shao, C. Qu and J. Liu, Chemosphere, 290, 133263 (2022); https://doi.org/10.1016/j.chemosphere.2021.133263
- Y. Omidi-Khaniabadi, A. Jafari, H. Nourmoradi, F. Taheri and S. Saeedi, J. Adv. Environ. Health Res., 3, 120 (2015).
- N.D. Shooto and P.M. Thabede, Chem. Thermodyn. Therm. Anal., 20, 100237 (2025); https://doi.org/10.1016/j.ctta.2025.100237
- N.D. Shooto and P.M. Thabede, Desalination Water Treat., 324, 101543 (2025); https://doi.org/10.1016/j.dwt.2025.101543
- Y. Li, X. Zhang, R. Yang, G. Li and C. Hu, RSC Adv., 5, 32626 (2015); https://doi.org/10.1039/C5RA04634C
- J. Zhuang, M. Li, Y. Pu, A.J. Ragauskas and C.G. Yoo, Appl. Sci., 10, 4345 (2020); https://doi.org/10.3390/app10124345
- T.T. Shi, B. Yang, W.G. Hu, G.J. Gao, X.Y. Jiang and J.G. Yu, Molecules, 29, 4772 (2024); https://doi.org/10.3390/molecules29194772
- S. Adhikari, E. Moon, J. Paz-Ferreiro and W. Timms, Sci. Total Environ., 914, 169607 (2024); https://doi.org/10.1016/j.scitotenv.2023.169607
- N.D. Shooto, Heliyon, 9, 20268 (2023); https://doi.org/10.1016/j.heliyon.2023.e20268
- K. Zhu, H. Fu, J. Zhang, X. Lv, J. Tang and X. Xu, Biomass Bioenergy, 43, 18 (2012); https://doi.org/10.1016/j.biombioe.2012.04.005
- P.D. Humpola, H.S. Odetti, A.E. Fertitta and J.L. Vicente, J. Chil. Chem. Soc., 58, 1541 (2013); https://doi.org/10.4067/S0717-97072013000100009
- E.M. Abdel-Hamid, H.M. Aly and K.A.M. El-Naggar, Sci. Rep., 14, 20631 (2024); https://doi.org/10.1038/s41598-024-70284-y
- K. Mabalane, N.D. Shooto and P.M. Thabede, Case Studies in Chemical and Environmental Engineering, 10, 100782 (2024a); https://doi.org/10.1016/j.cscee.2024.100782
- N. Nkosi, N.D. Shooto, P. Nyamukamba and P.M. Thabede, Energy Nexus, 15, 100313 (2024); https://doi.org/10.1016/j.nexus.2024.100313
- A. Khamkeaw, W. Sanprom and M. Phisalaphong, Case Stud. Chem. Environ. Eng., 8, 100499 (2023); https://doi.org/10.1016/j.cscee.2023.100499
- F. Pantoja, S. Beszedes, T. Gyulavari, E. Illes, G. Kozma and Z. Laszlo, Heliyon, 10, 31495 (2024); https://doi.org/10.1016/j.heliyon.2024.e31495
- K. Mabalane, P.M. Thabede and N.D. Shooto, Green Anal. Chem., 10, 100135 (2024); https://doi.org/10.1016/j.greeac.2024.100135
- S. Nezami, A. Ghaemi and T. Yousefi, Case Stud. Chem. Environ. Eng., 7, 100326 (2023); https://doi.org/10.1016/j.cscee.2023.100326
- A.H. Ragab, A.M. Zayed, B.S. Metwally, N.F. Gumaah, M.F. Mubarak, H. Shendy, A.M. Abd-Elgawad, M.M. Abdelsatar, M.S.M. Abdel Wahed and M.A. Masoud, Desalination Water Treat., 320, 100809 (2024); https://doi.org/10.1016/j.dwt.2024.100809
- T.A. Saleh, Interface Sci. Technol., 34, 39 (2022); https://doi.org/10.1016/B978-0-12-849876-7.00006-3
- M.O. Omorogie and B. Helmreich, Ind. Eng. Chem. Res., 63, 3947 (2024); https://doi.org/10.1021/acs.iecr.3c03971
- Z. Wang, J. Li, G. Zhang, Y. Zhi, D. Yang, X. Lai and T. Ren, Materials, 13, 2270 (2020); https://doi.org/10.3390/ma13102270
- W. Lee, S. Yoon, J.K. Choe, M. Lee and Y. Choi, Sci. Total Environ., 639, 1432 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.250
- D. Xu, J. Cao, Y. Li, A. Howard and K. Yu, Waste Manag., 87, 652 (2019); https://doi.org/10.1016/j.wasman.2019.02.049
- R. Boopathy, S. Karthikeyan, A.B. Mandal and G. Sekaran, Environ. Sci. Pollut. Res. Int., 20, 533 (2013); https://doi.org/10.1007/s11356-012-0911-3
- N.T. Vu and K.U. Do, Biomass Convers. Biorefin., 13, 2193 (2023); https://doi.org/10.1007/s13399-021-01337-9
- M.T. Vu, H.P. Chao, T. Van Trinh, T.T. Le, C.C. Lin and H.N. Tran, J. Clean. Prod., 180, 560 (2018); https://doi.org/10.1016/j.jclepro.2018.01.104
- S. Xue, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang and C. Ma, Bioresour. Technol., 292, 121927 (2019); https://doi.org/10.1016/j.biortech.2019.121927
- A. Musa, S.R.W. Alwi, N. Ngadi and S. Abbaszadeh, Chem. Eng. Trans., 56, 841 (2017); https://doi.org/10.3303/CET1756141
- H. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang and C. Ma, Sci. Total Environ., 707, 135544 (2020); https://doi.org/10.1016/j.scitotenv.2019.135544
- Q. Yin, B. Zhang, R. Wang and Z. Zhao, Environ. Sci. Pollut. Res. Int., 25, 4320 (2018); https://doi.org/10.1007/s11356-017-0778-4
- V.T. Nguyen, T.D.H. Vo, T. Tran, T.N. Nguyen, T.N.C. Le, X.T. Bui and L.G. Bach, Case Case Stud. Chem. Environ. Eng., 4, 100141 (2021); https://doi.org/10.1016/j.cscee.2021.100141
References
R.R. Karri, J.N. Sahu and V. Chimmiri, J. Mol. Liq., 261, 21 (2018); https://doi.org/10.1016/j.molliq.2018.03.120
A. Omar, F. Almomani, H. Qiblawey and K. Rasool, Sustainability, 16, 2112 (2024); https://doi.org/10.3390/su16052112
J. Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li and P.R. Teasdale, J. Environ. Sci. (China), 63, 174 (2018); https://doi.org/10.1016/j.jes.2017.09.009
H.W. Paerl, T.G. Otten and R. Kudela, Environ. Sci. Technol., 52, 5519 (2018); https://doi.org/10.1021/acs.est.7b05950
World Health Organization, Guidelines for Drinking-Water Quality, 2nd ed., vol. 2: Health Criteria and Other Supporting Information. Geneva: World Health Organization (1996).
J. Lan, P. Liu, X. Hu and S. Zhu, Water, 16, 2525 (2024); https://doi.org/10.3390/w16172525
S. Dasarathy, R.P. Mookerjee, V. Rackayova, V. Rangroo Thrane, B. Vairappan, P. Ott and C.F. Rose, Metab. Brain Dis., 32, 529 (2017); https://doi.org/10.1007/s11011-016-9938-3
X. Zeng, R. Liu, Y. Li, J. Li, Q. Zhao, X. Li and J. Bao, Ecotoxicol. Environ. Saf., 217, 112203 (2021); https://doi.org/10.1016/j.ecoenv.2021.112203
P.M. Thabede, N.D. Shooto and E.B. Naidoo, Asian J. Chem., 33, 471 (2021); https://doi.org/10.14233/ajchem.2021.23021
P.M. Thabede, N.D. Shooto, T. Xaba and E.B. Naidoo, Asian J. Chem., 32, 1361 (2020); https://doi.org/10.14233/ajchem.2020.22597
B.R. Mphuthi, P.M. Thabede, M.E. Monapathi and N.D. Shooto, Case Stud. Chem. Environ. Eng., 8, 100436 (2023); https://doi.org/10.1016/j.cscee.2023.100436
R.S. Riseh, M.G. Vazvani, M. Hassanisaadi and V.K. Thakur, Ind. Crops Prod., 208, 117904 (2024); https://doi.org/10.1016/j.indcrop.2023.117904
N. Mabungela, N.D. Shooto, E.D. Dikio, S.J. Modise, M.E. Monapathi, F.M. Mtunzi, T. Xaba and E.B. Naidoo, Environ. Chem. Ecotoxicol., 4, 171 (2022); https://doi.org/10.1016/j.enceco.2022.09.001
N.D. Shooto and E.B. Naidoo, Asian J. Chem., 31, 2249 (2019); https://doi.org/10.14233/ajchem.2019.22051
N.D. Shooto, Desalination Water Treat., 320, 100812 (2024); https://doi.org/10.1016/j.dwt.2024.100812
J. Ansary, T.Y. Forbes-Hernandez, E. Gil, D. Cianciosi, J. Zhang, M. Elexpuru-Zabaleta, J. Simal-Gandara, F. Giampieri and M. Battino, Antioxidants, 9, 619 (2020); https://doi.org/10.3390/antiox9070619
A.M. Aljeboree, A.Y. Al-Baitai, S.M. Abdalhadi and A.F. Alkaim, Egypt. J. Chem., 64, 2873 (2021); https://doi.org/10.21608/ejchem.2021.55274.3159
A.M. Aljeboree, A.F. Alkaim and A.H. Al-Dujaili, Desalination Water Treat., 53, 3656 (2015); https://doi.org/10.1080/19443994.2013.877854
A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, 3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
S. Liang, X. Guo and Q. Tian, Desalination Water Treat., 51, 7166 (2013); https://doi.org/10.1080/19443994.2013.769919
M.S. Abu-Shahba, M.M. Mansour, H.I. Mohamed and M.R. Sofy, Sci. Hortic., 293, 110727 (2022); https://doi.org/10.1016/j.scienta.2021.110727
Z.M. Saigl and E.E. Aloufi, Desalination Water Treat., 294, 149 (2023); https://doi.org/10.5004/dwt.2023.29569
Q. Chang, P. Li, Y. Han, X. Guan, J. Xiong, Q. Li, H. Zhang, K. Huang, X. Zhang, H. Xie and T. Qi, J. Environ. Chem. Eng., 11, 109997 (2023); https://doi.org/10.1016/j.jece.2023.109997
P. Muthamilselvi, R. Karthikeyan and B.S.M. Kumar, Desalination Water Treat., 57, 2089 (2016); https://doi.org/10.1080/19443994.2014.979237
B.H. Hameed and A.A. Ahmad, J. Hazard. Mater., 164, 870 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.084
M.F. Elshahawy, N.A. Ahmed and G.A. Mahmoud, Mater. Chem. Phys., 321, 129487 (2024); https://doi.org/10.1016/j.matchemphys.2024.129487
D. Pathania, V.S. Bhat, J. Mannekote Shivanna, G. Sriram, M. Kurkuri and G. Hegde, Spectrochim. Acta A Mol. Biomol. Spectrosc., 276, 121197 (2022); https://doi.org/10.1016/j.saa.2022.121197
Y. Zhao, L. Zhu, W. Li, J. Liu, X. Liu and K. Huang, J. Mol. Liq., 293, 111516 (2019); https://doi.org/10.1016/j.molliq.2019.111516
Y. Zhao, X. Liu, W. Li, K. Huang, H. Shao, C. Qu and J. Liu, Chemosphere, 290, 133263 (2022); https://doi.org/10.1016/j.chemosphere.2021.133263
Y. Omidi-Khaniabadi, A. Jafari, H. Nourmoradi, F. Taheri and S. Saeedi, J. Adv. Environ. Health Res., 3, 120 (2015).
N.D. Shooto and P.M. Thabede, Chem. Thermodyn. Therm. Anal., 20, 100237 (2025); https://doi.org/10.1016/j.ctta.2025.100237
N.D. Shooto and P.M. Thabede, Desalination Water Treat., 324, 101543 (2025); https://doi.org/10.1016/j.dwt.2025.101543
Y. Li, X. Zhang, R. Yang, G. Li and C. Hu, RSC Adv., 5, 32626 (2015); https://doi.org/10.1039/C5RA04634C
J. Zhuang, M. Li, Y. Pu, A.J. Ragauskas and C.G. Yoo, Appl. Sci., 10, 4345 (2020); https://doi.org/10.3390/app10124345
T.T. Shi, B. Yang, W.G. Hu, G.J. Gao, X.Y. Jiang and J.G. Yu, Molecules, 29, 4772 (2024); https://doi.org/10.3390/molecules29194772
S. Adhikari, E. Moon, J. Paz-Ferreiro and W. Timms, Sci. Total Environ., 914, 169607 (2024); https://doi.org/10.1016/j.scitotenv.2023.169607
N.D. Shooto, Heliyon, 9, 20268 (2023); https://doi.org/10.1016/j.heliyon.2023.e20268
K. Zhu, H. Fu, J. Zhang, X. Lv, J. Tang and X. Xu, Biomass Bioenergy, 43, 18 (2012); https://doi.org/10.1016/j.biombioe.2012.04.005
P.D. Humpola, H.S. Odetti, A.E. Fertitta and J.L. Vicente, J. Chil. Chem. Soc., 58, 1541 (2013); https://doi.org/10.4067/S0717-97072013000100009
E.M. Abdel-Hamid, H.M. Aly and K.A.M. El-Naggar, Sci. Rep., 14, 20631 (2024); https://doi.org/10.1038/s41598-024-70284-y
K. Mabalane, N.D. Shooto and P.M. Thabede, Case Studies in Chemical and Environmental Engineering, 10, 100782 (2024a); https://doi.org/10.1016/j.cscee.2024.100782
N. Nkosi, N.D. Shooto, P. Nyamukamba and P.M. Thabede, Energy Nexus, 15, 100313 (2024); https://doi.org/10.1016/j.nexus.2024.100313
A. Khamkeaw, W. Sanprom and M. Phisalaphong, Case Stud. Chem. Environ. Eng., 8, 100499 (2023); https://doi.org/10.1016/j.cscee.2023.100499
F. Pantoja, S. Beszedes, T. Gyulavari, E. Illes, G. Kozma and Z. Laszlo, Heliyon, 10, 31495 (2024); https://doi.org/10.1016/j.heliyon.2024.e31495
K. Mabalane, P.M. Thabede and N.D. Shooto, Green Anal. Chem., 10, 100135 (2024); https://doi.org/10.1016/j.greeac.2024.100135
S. Nezami, A. Ghaemi and T. Yousefi, Case Stud. Chem. Environ. Eng., 7, 100326 (2023); https://doi.org/10.1016/j.cscee.2023.100326
A.H. Ragab, A.M. Zayed, B.S. Metwally, N.F. Gumaah, M.F. Mubarak, H. Shendy, A.M. Abd-Elgawad, M.M. Abdelsatar, M.S.M. Abdel Wahed and M.A. Masoud, Desalination Water Treat., 320, 100809 (2024); https://doi.org/10.1016/j.dwt.2024.100809
T.A. Saleh, Interface Sci. Technol., 34, 39 (2022); https://doi.org/10.1016/B978-0-12-849876-7.00006-3
M.O. Omorogie and B. Helmreich, Ind. Eng. Chem. Res., 63, 3947 (2024); https://doi.org/10.1021/acs.iecr.3c03971
Z. Wang, J. Li, G. Zhang, Y. Zhi, D. Yang, X. Lai and T. Ren, Materials, 13, 2270 (2020); https://doi.org/10.3390/ma13102270
W. Lee, S. Yoon, J.K. Choe, M. Lee and Y. Choi, Sci. Total Environ., 639, 1432 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.250
D. Xu, J. Cao, Y. Li, A. Howard and K. Yu, Waste Manag., 87, 652 (2019); https://doi.org/10.1016/j.wasman.2019.02.049
R. Boopathy, S. Karthikeyan, A.B. Mandal and G. Sekaran, Environ. Sci. Pollut. Res. Int., 20, 533 (2013); https://doi.org/10.1007/s11356-012-0911-3
N.T. Vu and K.U. Do, Biomass Convers. Biorefin., 13, 2193 (2023); https://doi.org/10.1007/s13399-021-01337-9
M.T. Vu, H.P. Chao, T. Van Trinh, T.T. Le, C.C. Lin and H.N. Tran, J. Clean. Prod., 180, 560 (2018); https://doi.org/10.1016/j.jclepro.2018.01.104
S. Xue, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang and C. Ma, Bioresour. Technol., 292, 121927 (2019); https://doi.org/10.1016/j.biortech.2019.121927
A. Musa, S.R.W. Alwi, N. Ngadi and S. Abbaszadeh, Chem. Eng. Trans., 56, 841 (2017); https://doi.org/10.3303/CET1756141
H. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang and C. Ma, Sci. Total Environ., 707, 135544 (2020); https://doi.org/10.1016/j.scitotenv.2019.135544
Q. Yin, B. Zhang, R. Wang and Z. Zhao, Environ. Sci. Pollut. Res. Int., 25, 4320 (2018); https://doi.org/10.1007/s11356-017-0778-4
V.T. Nguyen, T.D.H. Vo, T. Tran, T.N. Nguyen, T.N.C. Le, X.T. Bui and L.G. Bach, Case Case Stud. Chem. Environ. Eng., 4, 100141 (2021); https://doi.org/10.1016/j.cscee.2021.100141