Copyright (c) 2025 Prashanthi Y, Yadagiri Rao Yasala, Mallesha H, Suresh Chary Kammari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of BaTiO3/Graphene Oxide/Polyvinylidene Fluoride Nanocomposite Film based Nanogenerator for Energy Harvesting Application
Corresponding Author(s) : Y. Prashanthi
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
Piezoelectric based flexible sensors are very important in the field of the wearable electronics and self-powered sensor applications. Herein, the synthesis of barium titanate nanoparticles (BT NPs) with a diameter are in the range of approximately 70-200 nm via hydrothermal process is reported. The synthesized BT NPs and graphene oxide (GO) are dispersed in PVDF polymer matrix to fabricate the nanocomposite film. Flexible nanogenerator was developed using BT/GO/PVDF nanocomposite film and copper electrodes and packed in the epoxy polymer. Nanogenerator exhibited the output voltage ~11 V and ~0.34 µW power under repeated mechanical tapping. The robustness of developed nanogenerator was studied under 1000 cycle of continuous mechanical tapping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.K. Jaiswal, C.R. Chowdhury, D. Yadav, R. Verma, S. Dutta, K.S. Jaiswal, B. Sangmesh and K.S.K. Karuppasamy, Energy Nexus, 7, 100118 (2022); https://doi.org/10.1016/j.nexus.2022.100118
- G.E. Halkos and E.-C. Gkampoura, Energies, 13, 2906 (2020); https://doi.org/10.3390/en13112906
- A.G. Olabi, K. Elsaid, K. Obaideen, M.A. Abdelkareem, H. Rezk, T. Wilberforce, H.M. Maghrabie and E.T. Sayed, Int. J. Thermofluids, 20, 100498 (2023); https://doi.org/10.1016/j.ijft.2023.100498
- T.-Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari and N. Prabaharan, Energy Strategy Rev., 43, 100939 (2022); https://doi.org/10.1016/j.esr.2022.100939
- A. Elkhatat and S. Al-Muhtaseb, Energies, 17, 3179 (2024); https://doi.org/10.3390/en17133179
- A.I. Osman, L. Chen, M. Yang, G. Msigwa, M. Farghali, S. Fawzy, D. W. Rooney and P.-S. Yap, Environ. Chem. Lett., 21, 741 (2023); https://doi.org/10.1007/s10311-022-01532-8
- J. Briscoe and S. Dunn, Nano Energy, 14, 15 (2015); https://doi.org/10.1016/j.nanoen.2014.11.059
- S. Sapkal, B. Kandasubramanian and H.S. Panda, J. Mater. Sci. Mater. Electron., 33, 26633 (2022); https://doi.org/10.1007/s10854-022-09339-7
- J. Ye, T. Xu and J.-C. Tan, ACS Appl. Nano Mater., 8, 3942 (2025); https://doi.org/10.1021/acsanm.4c06732
- H. Ryu and S.W. Kim. Small, 17, e1903469 (2021); https://doi.org/10.1002/smll.201903469
- R. Ganeshkumar, C.W. Cheah, R. Xu, S.-G. Kim and R. Zhao, Appl. Phys. Lett., 111, 013905 (2017); https://doi.org/10.1063/1.4992786
- S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung and J. Nah, ACS Nano, 8, 2766 (2014); https://doi.org/10.1021/nn406481k
- B. Saravanakumar, S. Soyoon and S.-J. Kim, ACS Appl. Mater. Interfaces, 6, 13716 (2014); https://doi.org/10.1021/am5031648
- X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu and Z.L. Wang, Sci. Adv., 3, e1700694 (2017); https://doi.org/10.1126/sciadv.1700694
- C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh and L. Lin, Nano Lett., 10, 726 (2010); https://doi.org/10.1021/nl9040719
- B. Saravanakumar, R. Mohan, K. Thiyagarajan and S.-J. Kim, RSC Advances, 3, 16646 (2013); https://doi.org/10.1039/c3ra40447a
- Z.-H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang and Z.L. Wang, J. Phys. Chem. Lett., 3, 3599 (2012); https://doi.org/10.1021/jz301805f
- W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang and T. Jing, ACS Nano, 6, 6231 (2012); https://doi.org/10.1021/nn3016585
- B. Rawal, P. Dixit, N.N. Wathore, B. Praveenkumar and H.S. Panda, Bull. Mater. Sci., 43, 82 (2020); https://doi.org/10.1007/s12034-020-2052-5
- B. Rawal, P. Dixit, B. Praveenkumar and H.S. Panda, J. Aust. Ceram. Soc., 55, 729 (2019); https://doi.org/10.1007/s41779-018-0284-2
- K.S. Chary, H.S. Panda and C.D. Prasad, Ind. Eng. Chem. Res., 56, 10335 (2017); https://doi.org/10.1021/acs.iecr.7b02182
- H.M. Venkatesan, I. Woo, J.U. Yoon, P. Gajula, A.P. Arun and J.W. Bae, Adv. Compos. Hybrid Mater., 8, 221 (2025); https://doi.org/10.1007/s42114-025-01296-z
- J.-C. Liou, C.-C. Diao, J.-J. Lin, Y.-L. Chen and C.-F. Yang, Nanoscale Res. Lett., 9, 1 (2014); https://doi.org/10.1186/1556-276X-9-1
- K.S. Chary, V. Kumar, C.D. Prasad and H.S. Panda, J. Aust. Ceram. Soc., 56, 1107 (2020); https://doi.org/10.1007/s41779-020-00458-0
- A. Teka, S. Bairagi, M. Shahadat, M. Joshi, S. Ziauddin Ahammad and S. Wazed Ali, Polym. Adv. Technol., 29, 2537 (2018); https://doi.org/10.1002/pat.4365
References
K.K. Jaiswal, C.R. Chowdhury, D. Yadav, R. Verma, S. Dutta, K.S. Jaiswal, B. Sangmesh and K.S.K. Karuppasamy, Energy Nexus, 7, 100118 (2022); https://doi.org/10.1016/j.nexus.2022.100118
G.E. Halkos and E.-C. Gkampoura, Energies, 13, 2906 (2020); https://doi.org/10.3390/en13112906
A.G. Olabi, K. Elsaid, K. Obaideen, M.A. Abdelkareem, H. Rezk, T. Wilberforce, H.M. Maghrabie and E.T. Sayed, Int. J. Thermofluids, 20, 100498 (2023); https://doi.org/10.1016/j.ijft.2023.100498
T.-Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari and N. Prabaharan, Energy Strategy Rev., 43, 100939 (2022); https://doi.org/10.1016/j.esr.2022.100939
A. Elkhatat and S. Al-Muhtaseb, Energies, 17, 3179 (2024); https://doi.org/10.3390/en17133179
A.I. Osman, L. Chen, M. Yang, G. Msigwa, M. Farghali, S. Fawzy, D. W. Rooney and P.-S. Yap, Environ. Chem. Lett., 21, 741 (2023); https://doi.org/10.1007/s10311-022-01532-8
J. Briscoe and S. Dunn, Nano Energy, 14, 15 (2015); https://doi.org/10.1016/j.nanoen.2014.11.059
S. Sapkal, B. Kandasubramanian and H.S. Panda, J. Mater. Sci. Mater. Electron., 33, 26633 (2022); https://doi.org/10.1007/s10854-022-09339-7
J. Ye, T. Xu and J.-C. Tan, ACS Appl. Nano Mater., 8, 3942 (2025); https://doi.org/10.1021/acsanm.4c06732
H. Ryu and S.W. Kim. Small, 17, e1903469 (2021); https://doi.org/10.1002/smll.201903469
R. Ganeshkumar, C.W. Cheah, R. Xu, S.-G. Kim and R. Zhao, Appl. Phys. Lett., 111, 013905 (2017); https://doi.org/10.1063/1.4992786
S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung and J. Nah, ACS Nano, 8, 2766 (2014); https://doi.org/10.1021/nn406481k
B. Saravanakumar, S. Soyoon and S.-J. Kim, ACS Appl. Mater. Interfaces, 6, 13716 (2014); https://doi.org/10.1021/am5031648
X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu and Z.L. Wang, Sci. Adv., 3, e1700694 (2017); https://doi.org/10.1126/sciadv.1700694
C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh and L. Lin, Nano Lett., 10, 726 (2010); https://doi.org/10.1021/nl9040719
B. Saravanakumar, R. Mohan, K. Thiyagarajan and S.-J. Kim, RSC Advances, 3, 16646 (2013); https://doi.org/10.1039/c3ra40447a
Z.-H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang and Z.L. Wang, J. Phys. Chem. Lett., 3, 3599 (2012); https://doi.org/10.1021/jz301805f
W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang and T. Jing, ACS Nano, 6, 6231 (2012); https://doi.org/10.1021/nn3016585
B. Rawal, P. Dixit, N.N. Wathore, B. Praveenkumar and H.S. Panda, Bull. Mater. Sci., 43, 82 (2020); https://doi.org/10.1007/s12034-020-2052-5
B. Rawal, P. Dixit, B. Praveenkumar and H.S. Panda, J. Aust. Ceram. Soc., 55, 729 (2019); https://doi.org/10.1007/s41779-018-0284-2
K.S. Chary, H.S. Panda and C.D. Prasad, Ind. Eng. Chem. Res., 56, 10335 (2017); https://doi.org/10.1021/acs.iecr.7b02182
H.M. Venkatesan, I. Woo, J.U. Yoon, P. Gajula, A.P. Arun and J.W. Bae, Adv. Compos. Hybrid Mater., 8, 221 (2025); https://doi.org/10.1007/s42114-025-01296-z
J.-C. Liou, C.-C. Diao, J.-J. Lin, Y.-L. Chen and C.-F. Yang, Nanoscale Res. Lett., 9, 1 (2014); https://doi.org/10.1186/1556-276X-9-1
K.S. Chary, V. Kumar, C.D. Prasad and H.S. Panda, J. Aust. Ceram. Soc., 56, 1107 (2020); https://doi.org/10.1007/s41779-020-00458-0
A. Teka, S. Bairagi, M. Shahadat, M. Joshi, S. Ziauddin Ahammad and S. Wazed Ali, Polym. Adv. Technol., 29, 2537 (2018); https://doi.org/10.1002/pat.4365