Copyright (c) 2025 Bhuwan Chandra, G. LOHIYA, J. KOHLI, A. TAMTA, N.D. KANDPAL

This work is licensed under a Creative Commons Attribution 4.0 International License.
Biosynthesis of Rice Starch-Manganese Dioxide (IV) Nanocomposite: Its Characterization and Biological Potential
Corresponding Author(s) : B. Chandra
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
Manganese dioxide (MnO2) nanoparticles were biosynthesized in this study, utilizing rice starch (a natural polymer) to form nanocomposites with useful biological and analytical properties. The synthesized nanocomposites were characterized by XRD, FTIR, UV-Vis, HRTEM, FESEM-EDX and Zeta potential analysis. FTIR confirmed the formation of rice starch-manganese dioxide (rice starch-MnO2) nanocomposites and the presence of functional groups in the synthesis. XRD analysis determined the average crystalline size to be 38.27 nm, while FESEM and HRTEM revealed a spherical structure with irregular morphology. EDX confirmed a presence of manganese content 43.12%, oxygen 29.02% and carbon 27.86%. The anticancer activity against the HepG2 cell line (a human liver cancer cell line) was determined by MTT Assay, with an IC50 value of 76.31 ± 0.092 µg/mL. Antioxidant activity shows appreciable potency in the DPPH scavenging assay. The nanocomposites were thought to be stable under thermal conditions and to have prominent antioxidant and anticancer properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.M. Saod, L.L. Hamid, N.J. Alaallah and A. Ramizy, Biotechnol. Rep., 34, e00729 (2022); https://doi.org/10.1016/j.btre.2022.e00729.
- H.Y. Xia, B.Y. Li, Y. Zhao, Y.H. Han, S.B. Wang, A.Z. Chen and R.K. Kankala, Coord. Chem. Rev., 464, 214540 (2022); https://doi.org/10.1016/j.ccr.2022.214540
- A. Greene, J. Hashemi and Y. Kang, Nanotechnology, 32, 025713 (2021); https://doi.org/10.1088/1361-6528/abb626
- Y. Chen, H. Cong, Y. Shen and B. Yu, Nanotechnology, 31, 202001 (2020); https://doi.org/10.1088/1361-6528/ab6fe1
- H. Lu, X. Zhang, S.A. Khan, W. Li and L. Wan, Front. Microbiol., 12, 761084 (2021); https://doi.org/10.3389/fmicb.2021.761084
- R.R. Muthuchudarkodi and C. Vedhi, Appl. Nanosci., 5, 481 (2015); https://doi.org/10.1007/s13204-014-0340-3
- I. khan, E. Laiq and U. Meraj, Orient. J. Chem., 41, 758 (2025); https://doi.org/10.13005/ojc/410307
- L. Umaralikhan and M.J. Mohamed Jaffar, Iran. J. Sci. Technol. Trans. A Sci., 42, 477 (2018); https://doi.org/10.1007/s40995-016-0041-8
- A.A. Shaikh, P. Datta, P. Dastidar, A. Majumder, M.D. Das, P. Manna and S. Roy, J. Polym. Eng., 44, 83 (2024); https://doi.org/10.1515/polyeng-2023-0166
- A. Ghazzy, R.R. Naik and A.K. Shakya, Polymers, 15, 2167 (2023); https://doi.org/10.3390/polym15092167
- B. Prill and S. Yusan, Particul. Sci. Technol., 40, 521 (2022); https://doi.org/10.1080/02726351.2021.1967536
- H.E. Ali, M.M. Abdel-Aziz, A.M. Aboraia, I.S. Yahia, H. Algarni, V. Butova, A.V. Soldatov and Y. Khairy, Optik, 227, 165969 (2021); https://doi.org/10.1016/j.ijleo.2020.165969
- R. Ahmed, H. Tahir, M. Saad, M. Latif, A. K. Tanoli and T. Haider, Iran. J. Chem. Chem. Eng, 42, (2023).
- D. Souza, A.F. Sbardelotto, D.R. Ziegler, L.D.F. Marczak and I.C. Tessaro, Food Chem., 191, 36 (2016); https://doi.org/10.1016/j.foodchem.2015.03.032
- S.S. Majani, S. Sathyan, M.V. Manoj, N. Vinod, S. Pradeep, C. Shivamallu, V. K.N and S.P. Kollur, Curr. Res. Green Sustain. Chem., 6, 100367 (2023); https://doi.org/10.1016/j.crgsc.2023.100367
- R. Kizil, J. Irudayaraj and K. Seetharaman, J. Agric. Food Chem., 50, 3912 (2002); https://doi.org/10.1021/jf011652p
- D. Fan, W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang and W. Chen, Stärke, 64, 598 (2012); https://doi.org/10.1002/star.201100200
- M. Ahmad, A. Gani, I. Hassan, Q. Huang and H. Shabbir, Sci. Rep., 10, 3533 (2020); https://doi.org/10.1038/s41598-020-60380-0
- I. Govindaraju, G.-Y. Zhuo, I. Chakraborty, S.K. Melanthota, S.S. Mal, B. Sarmah, V.J. Baruah, K.K. Mahato and N. Mazumder, Food Hydrocoll., 122, 107093 (2022); https://doi.org/10.1016/j.foodhyd.2021.107093
- P.V. Kowsik and N. Mazumder, Microsc. Res. Tech., 81, 1533 (2018); https://doi.org/10.1002/jemt.23160
- A. Kumar, M.S. Aathira, U. Pal and S.L. Jain, ChemCatChem, 10, 1844 (2018); https://doi.org/10.1002/cctc.201701470
- M.Z. Rong, M.Q. Zhang and W.H. Ruan, Mater. Sci. Technol., 22, 787 (2006); https://doi.org/10.1179/174328406X101247
- J. Henry, K. Mohanraj, S. Kannan, S. Barathan and G. Sivakumar, Walailak J. Sci. Technol., 11, 437 (2014).
- M.E. Abd El-Aziz, S.M.M. Morsi, M.S. Hasanin and A.M. Youssef, Carbohydr. Polym. Technol. Appl, 10, 100789 (2025); https://doi.org/10.1016/j.carpta.2025.100789
- P. Yadav, R.T. Olsson and M. Jonsson, Radiat. Phys. Chem., 78, 939 (2009); https://doi.org/10.1016/j.radphyschem.2009.02.006
- M. Ganesan, C. Muthaiah, M.A. Wadaan, M. Kumar, D.H.Y. Yanto, S. Kumar, T. Selvankumar, A. Arulraj, R.V. Mangalaraja and S. Suganthi, Luminescence, 39, e4875 (2024); https://doi.org/10.1002/bio.4875
- I. Ullah, A. Kamal, M. Saba, U. Ara, D. Touhami, A. Wahab, T. Maqbool, M. Nazish, A.F. Alrefaei and M. Lackner, Sci. Rep., 15, 23696 (2025); https://doi.org/10.1038/s41598-025-93818-4
- Y. Ji, Y. Wang, X. Wang, C. Lv, Q. Zhou, G. Jiang, B. Yan and L. Chen, J. Hazard. Mater., 468, 133800 (2024); https://doi.org/10.1016/j.jhazmat.2024.133800
- K. Manimaran, D.H.Y. Yanto, M. Govindasamy, B. Karunanithi, F.A. Alasmary and R.A. Habab, Biomass Convers. Biorefin., 14, 12575 (2024); https://doi.org/10.1007/s13399-023-04382-8
- H.H. Farhan and A.M. Mohammed, Results Chem., 7, 101266 (2024); https://doi.org/10.1016/j.rechem.2023.101266
- S. Pardhiya, E. Priyadarshini and P. Rajamani, SN Appl. Sci., 2, 1597 (2020); https://doi.org/10.1007/s42452-020-03407-5
References
W.M. Saod, L.L. Hamid, N.J. Alaallah and A. Ramizy, Biotechnol. Rep., 34, e00729 (2022); https://doi.org/10.1016/j.btre.2022.e00729.
H.Y. Xia, B.Y. Li, Y. Zhao, Y.H. Han, S.B. Wang, A.Z. Chen and R.K. Kankala, Coord. Chem. Rev., 464, 214540 (2022); https://doi.org/10.1016/j.ccr.2022.214540
A. Greene, J. Hashemi and Y. Kang, Nanotechnology, 32, 025713 (2021); https://doi.org/10.1088/1361-6528/abb626
Y. Chen, H. Cong, Y. Shen and B. Yu, Nanotechnology, 31, 202001 (2020); https://doi.org/10.1088/1361-6528/ab6fe1
H. Lu, X. Zhang, S.A. Khan, W. Li and L. Wan, Front. Microbiol., 12, 761084 (2021); https://doi.org/10.3389/fmicb.2021.761084
R.R. Muthuchudarkodi and C. Vedhi, Appl. Nanosci., 5, 481 (2015); https://doi.org/10.1007/s13204-014-0340-3
I. khan, E. Laiq and U. Meraj, Orient. J. Chem., 41, 758 (2025); https://doi.org/10.13005/ojc/410307
L. Umaralikhan and M.J. Mohamed Jaffar, Iran. J. Sci. Technol. Trans. A Sci., 42, 477 (2018); https://doi.org/10.1007/s40995-016-0041-8
A.A. Shaikh, P. Datta, P. Dastidar, A. Majumder, M.D. Das, P. Manna and S. Roy, J. Polym. Eng., 44, 83 (2024); https://doi.org/10.1515/polyeng-2023-0166
A. Ghazzy, R.R. Naik and A.K. Shakya, Polymers, 15, 2167 (2023); https://doi.org/10.3390/polym15092167
B. Prill and S. Yusan, Particul. Sci. Technol., 40, 521 (2022); https://doi.org/10.1080/02726351.2021.1967536
H.E. Ali, M.M. Abdel-Aziz, A.M. Aboraia, I.S. Yahia, H. Algarni, V. Butova, A.V. Soldatov and Y. Khairy, Optik, 227, 165969 (2021); https://doi.org/10.1016/j.ijleo.2020.165969
R. Ahmed, H. Tahir, M. Saad, M. Latif, A. K. Tanoli and T. Haider, Iran. J. Chem. Chem. Eng, 42, (2023).
D. Souza, A.F. Sbardelotto, D.R. Ziegler, L.D.F. Marczak and I.C. Tessaro, Food Chem., 191, 36 (2016); https://doi.org/10.1016/j.foodchem.2015.03.032
S.S. Majani, S. Sathyan, M.V. Manoj, N. Vinod, S. Pradeep, C. Shivamallu, V. K.N and S.P. Kollur, Curr. Res. Green Sustain. Chem., 6, 100367 (2023); https://doi.org/10.1016/j.crgsc.2023.100367
R. Kizil, J. Irudayaraj and K. Seetharaman, J. Agric. Food Chem., 50, 3912 (2002); https://doi.org/10.1021/jf011652p
D. Fan, W. Ma, L. Wang, J. Huang, J. Zhao, H. Zhang and W. Chen, Stärke, 64, 598 (2012); https://doi.org/10.1002/star.201100200
M. Ahmad, A. Gani, I. Hassan, Q. Huang and H. Shabbir, Sci. Rep., 10, 3533 (2020); https://doi.org/10.1038/s41598-020-60380-0
I. Govindaraju, G.-Y. Zhuo, I. Chakraborty, S.K. Melanthota, S.S. Mal, B. Sarmah, V.J. Baruah, K.K. Mahato and N. Mazumder, Food Hydrocoll., 122, 107093 (2022); https://doi.org/10.1016/j.foodhyd.2021.107093
P.V. Kowsik and N. Mazumder, Microsc. Res. Tech., 81, 1533 (2018); https://doi.org/10.1002/jemt.23160
A. Kumar, M.S. Aathira, U. Pal and S.L. Jain, ChemCatChem, 10, 1844 (2018); https://doi.org/10.1002/cctc.201701470
M.Z. Rong, M.Q. Zhang and W.H. Ruan, Mater. Sci. Technol., 22, 787 (2006); https://doi.org/10.1179/174328406X101247
J. Henry, K. Mohanraj, S. Kannan, S. Barathan and G. Sivakumar, Walailak J. Sci. Technol., 11, 437 (2014).
M.E. Abd El-Aziz, S.M.M. Morsi, M.S. Hasanin and A.M. Youssef, Carbohydr. Polym. Technol. Appl, 10, 100789 (2025); https://doi.org/10.1016/j.carpta.2025.100789
P. Yadav, R.T. Olsson and M. Jonsson, Radiat. Phys. Chem., 78, 939 (2009); https://doi.org/10.1016/j.radphyschem.2009.02.006
M. Ganesan, C. Muthaiah, M.A. Wadaan, M. Kumar, D.H.Y. Yanto, S. Kumar, T. Selvankumar, A. Arulraj, R.V. Mangalaraja and S. Suganthi, Luminescence, 39, e4875 (2024); https://doi.org/10.1002/bio.4875
I. Ullah, A. Kamal, M. Saba, U. Ara, D. Touhami, A. Wahab, T. Maqbool, M. Nazish, A.F. Alrefaei and M. Lackner, Sci. Rep., 15, 23696 (2025); https://doi.org/10.1038/s41598-025-93818-4
Y. Ji, Y. Wang, X. Wang, C. Lv, Q. Zhou, G. Jiang, B. Yan and L. Chen, J. Hazard. Mater., 468, 133800 (2024); https://doi.org/10.1016/j.jhazmat.2024.133800
K. Manimaran, D.H.Y. Yanto, M. Govindasamy, B. Karunanithi, F.A. Alasmary and R.A. Habab, Biomass Convers. Biorefin., 14, 12575 (2024); https://doi.org/10.1007/s13399-023-04382-8
H.H. Farhan and A.M. Mohammed, Results Chem., 7, 101266 (2024); https://doi.org/10.1016/j.rechem.2023.101266
S. Pardhiya, E. Priyadarshini and P. Rajamani, SN Appl. Sci., 2, 1597 (2020); https://doi.org/10.1007/s42452-020-03407-5