Copyright (c) 2025 Swetangi Suman, Dilip Kumar Choudhary, Simant Srivastav

This work is licensed under a Creative Commons Attribution 4.0 International License.
Facile Synthesis of Single Phase Pr-Doped BiFeO3 Nanoparticles via a Sol-Gel Auto Combustion Technique
Corresponding Author(s) : Simant Kumar Srivastav
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
In this study, the synthesis of single-phase Pr-doped bismuth ferrite, Bi1-xPrxFeO3 (x = 0, 0.05, 0.07 and 0.10) nanoparticles by the sol-gel auto-combustion method, followed by calcination at 400 ºC, is reported. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques were used to characterize the samples. TEM images illustrate the formation nearly spherical nanoparticles in the size range of 30-80 nm. XRD confirmed the formation of single phase and well-crystallized Bi1-xPrxFeO3 nanoparticles at 400 ºC. XRD results show a gradual shift and merge of diffraction peaks on increasing doping concentration of Pr3+ in the BiFeO3 matrix, which suggested a structural phase transition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Winkler, K. Geirhos, T. Tyborowski, B. Tóth, D.G. Farkas, J.S. White, T. Ito, S. Krohns, P. Lunkenheimer, S. Bordács and I. Kézsmárki, Appl. Phys. Lett., 125, 252902 (2024); https://doi.org/10.1063/5.0237659
- Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan, C.-W. Nan and Y.-H. Lin, Prog. Mater. Sci., 127, 100943 (2022); https://doi.org/10.1016/j.pmatsci.2022.100943
- T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin and S.W. Cheong, Science, 324, 63 (2009); https://doi.org/10.1126/science.1168636
- F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou and J.-M. Liu, Adv. Mater., 19, 2889 (2007); https://doi.org/10.1002/adma.200602377
- J. Wu, Z. Fan, D. Xiao, J. Zhu and J. Wang, Prog. Mater. Sci., 84, 335 (2016); https://doi.org/10.1016/j.pmatsci.2016.09.001
- F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, C. Gattinoni, J. Sort, B.J. Nelson and S. Pané, iScience, 4, 236 (2018); https://doi.org/10.1016/j.isci.2018.06.003
- S.-M. Lam, J.-C. Sin and A.R. Mohamed, Mater. Res. Bull., 90, 15 (2017); https://doi.org/10.1016/j.materresbull.2016.12.052
- A. Haruna, I. Abdulkadir and S.O. Idris, Heliyon, 6, e03237 (2020); https://doi.org/10.1016/j.heliyon.2020.e03237
- S. Bharathkumar, M. Sakar, J. Archana, M. Navaneethan and S. Balakumar, Chemosphere, 284, 131280 (2021); https://doi.org/10.1016/j.chemosphere.2021.131280
- I. Papadas, J.A. Christodoulides, G. Kioseoglou and G.S. Armatas, J. Mater. Chem. A Mater. Energy Sustain., 3, 1587 (2015); https://doi.org/10.1039/C4TA05272B
- J.K. Reddy, B. Srinivas, V.D. Kumari and M. Subrahmanyam, ChemCatChem, 1, 492 (2009); https://doi.org/10.1002/cctc.200900189
- S.X. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu and W. Xu, Photochem. Photobiol., 88, 1205 (2012); https://doi.org/10.1111/j.1751-1097.2012.01164.x
- Z.M. El-Bahy, A.A. Ismail and R.M. Mohamed, J. Hazard. Mater., 166, 138 (2009); https://doi.org/10.1016/j.jhazmat.2008.11.022
- M. Sakar, S. Balakumar, P. Saravanan and S. Bharathkumar, Nanoscale, 7, 10667 (2015); https://doi.org/10.1039/C5NR01079A
- Y.L. Pei and C.L. Zhang, J. Alloys Compd., 570, 57 (2013); https://doi.org/10.1016/j.jallcom.2013.03.176
- N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin and Y. Huang, Sci. Rep., 6, 26467 (2016); https://doi.org/10.1038/srep26467
- S.J.J. Kay, N. Chidhambaram, A. Thirumurugan, S. Shanavas, P. Sakthivel and R.S.R. Isaac, J. Mater. Sci.: Mater. Electron., 34, 2034 (2023); https://doi.org/10.1007/s10854-023-11486-4
- S. Kharbanda, N. Dhanda, A.-C.A. Sun, A. Thakur and P. Thakur, J. Magn. Magn. Mater., 572, 170569 (2023); https://doi.org/10.1016/j.jmmm.2023.170569
- Q. Zhang, D. Sando and V. Nagarajan, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 4092 (2016); https://doi.org/10.1039/C6TC00243A
- M. Verma, A. Kumar, V.K. Thakur, A. Maurya, S. Kumar, S. Singh and S.K. Srivastva, Journal of Sol-Gel Technology, 113, 356 (2024); https://doi.org/10.1007/s10971-024-06607-2
- T.J. Park, G. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh and S.S. Wong, Nano Lett., 7, 766 (2007); https://doi.org/10.1021/nl063039w
- T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x
- T. Liu, Y. Xu, S. Feng and J. Zhao, J. Am. Ceram. Soc., 94, 3060 (2011); https://doi.org/10.1111/j.1551-2916.2011.04536.x
- S. Ghosh, S. Dasgupta, A. Sen and H.S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005); https://doi.org/10.1111/j.1551-2916.2005.00306.x
- S.K. Srivastav and N.S. Gajbhiye, J. Am. Ceram. Soc., 95, 3678 (2012); https://doi.org/10.1111/j.1551-2916.2012.05411.x
- G.V. Rao, C.N.R. Rao and J.R. Ferraro, Appl. Spectrosc., 24, 436 (1970); https://doi.org/10.1366/000370270774371426
- R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B, 25, 925 (1969); https://doi.org/10.1107/S0567740869003220
- G.L. Yuan and S.W. Or, J. Appl. Phys., 100, 024109 (2006); https://doi.org/10.1063/1.2220642
- G.L. Yuan, S.W. Or and H.L.W. Chan, J. Appl. Phys., 101, 064101 (2007); https://doi.org/10.1063/1.2433709
- V.A. Khomchenko, D.V. Karpinsky, A.L. Kholkin, N.A. Sobolev, G.N. Kakazei, J.P. Araujo, I.O. Troyanchuk, B.F.O. Costa and J.A. Paixão, J. Appl. Phys., 108, 74109 (2010); https://doi.org/10.1063/1.3486500
- S. Mohan, B. Subramanian, I. Bhaumik, P.K. Gupta and S.N. Jaisankar, RSC Adv., 4, 16871 (2014); https://doi.org/10.1039/C4RA00137K
- R.Q. Guo, L. Fang, W. Dong, F.G. Zheng and M.R. Shen, J. Phys. Chem. C, 114, 21390 (2010); https://doi.org/10.1021/jp104660a
- J.H. Shah, Z. Huaqian, R. Mehmood, A.I. Channa, J. Kazmi, L. Zhang, F. Rosei and Z. Wang, J. Mater. Chem. A Mater. Energy Sustain., 12, 11644 (2024); https://doi.org/10.1039/D4TA00886C
- B. Wang, S.M. Wang, L.X. Gong and Z.F. Zhou, Ceram. Int., 38, 6643 (2012); https://doi.org/10.1016/j.ceramint.2012.05.051
- J. Liu, L. Fang, F.G. Zheng, S. Ju and M.G. Shen, Appl. Phys. Lett., 95, 022511 (2009); https://doi.org/10.1063/1.3183580
References
M. Winkler, K. Geirhos, T. Tyborowski, B. Tóth, D.G. Farkas, J.S. White, T. Ito, S. Krohns, P. Lunkenheimer, S. Bordács and I. Kézsmárki, Appl. Phys. Lett., 125, 252902 (2024); https://doi.org/10.1063/5.0237659
Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan, C.-W. Nan and Y.-H. Lin, Prog. Mater. Sci., 127, 100943 (2022); https://doi.org/10.1016/j.pmatsci.2022.100943
T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin and S.W. Cheong, Science, 324, 63 (2009); https://doi.org/10.1126/science.1168636
F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou and J.-M. Liu, Adv. Mater., 19, 2889 (2007); https://doi.org/10.1002/adma.200602377
J. Wu, Z. Fan, D. Xiao, J. Zhu and J. Wang, Prog. Mater. Sci., 84, 335 (2016); https://doi.org/10.1016/j.pmatsci.2016.09.001
F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, C. Gattinoni, J. Sort, B.J. Nelson and S. Pané, iScience, 4, 236 (2018); https://doi.org/10.1016/j.isci.2018.06.003
S.-M. Lam, J.-C. Sin and A.R. Mohamed, Mater. Res. Bull., 90, 15 (2017); https://doi.org/10.1016/j.materresbull.2016.12.052
A. Haruna, I. Abdulkadir and S.O. Idris, Heliyon, 6, e03237 (2020); https://doi.org/10.1016/j.heliyon.2020.e03237
S. Bharathkumar, M. Sakar, J. Archana, M. Navaneethan and S. Balakumar, Chemosphere, 284, 131280 (2021); https://doi.org/10.1016/j.chemosphere.2021.131280
I. Papadas, J.A. Christodoulides, G. Kioseoglou and G.S. Armatas, J. Mater. Chem. A Mater. Energy Sustain., 3, 1587 (2015); https://doi.org/10.1039/C4TA05272B
J.K. Reddy, B. Srinivas, V.D. Kumari and M. Subrahmanyam, ChemCatChem, 1, 492 (2009); https://doi.org/10.1002/cctc.200900189
S.X. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu and W. Xu, Photochem. Photobiol., 88, 1205 (2012); https://doi.org/10.1111/j.1751-1097.2012.01164.x
Z.M. El-Bahy, A.A. Ismail and R.M. Mohamed, J. Hazard. Mater., 166, 138 (2009); https://doi.org/10.1016/j.jhazmat.2008.11.022
M. Sakar, S. Balakumar, P. Saravanan and S. Bharathkumar, Nanoscale, 7, 10667 (2015); https://doi.org/10.1039/C5NR01079A
Y.L. Pei and C.L. Zhang, J. Alloys Compd., 570, 57 (2013); https://doi.org/10.1016/j.jallcom.2013.03.176
N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin and Y. Huang, Sci. Rep., 6, 26467 (2016); https://doi.org/10.1038/srep26467
S.J.J. Kay, N. Chidhambaram, A. Thirumurugan, S. Shanavas, P. Sakthivel and R.S.R. Isaac, J. Mater. Sci.: Mater. Electron., 34, 2034 (2023); https://doi.org/10.1007/s10854-023-11486-4
S. Kharbanda, N. Dhanda, A.-C.A. Sun, A. Thakur and P. Thakur, J. Magn. Magn. Mater., 572, 170569 (2023); https://doi.org/10.1016/j.jmmm.2023.170569
Q. Zhang, D. Sando and V. Nagarajan, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 4092 (2016); https://doi.org/10.1039/C6TC00243A
M. Verma, A. Kumar, V.K. Thakur, A. Maurya, S. Kumar, S. Singh and S.K. Srivastva, Journal of Sol-Gel Technology, 113, 356 (2024); https://doi.org/10.1007/s10971-024-06607-2
T.J. Park, G. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh and S.S. Wong, Nano Lett., 7, 766 (2007); https://doi.org/10.1021/nl063039w
T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x
T. Liu, Y. Xu, S. Feng and J. Zhao, J. Am. Ceram. Soc., 94, 3060 (2011); https://doi.org/10.1111/j.1551-2916.2011.04536.x
S. Ghosh, S. Dasgupta, A. Sen and H.S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005); https://doi.org/10.1111/j.1551-2916.2005.00306.x
S.K. Srivastav and N.S. Gajbhiye, J. Am. Ceram. Soc., 95, 3678 (2012); https://doi.org/10.1111/j.1551-2916.2012.05411.x
G.V. Rao, C.N.R. Rao and J.R. Ferraro, Appl. Spectrosc., 24, 436 (1970); https://doi.org/10.1366/000370270774371426
R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B, 25, 925 (1969); https://doi.org/10.1107/S0567740869003220
G.L. Yuan and S.W. Or, J. Appl. Phys., 100, 024109 (2006); https://doi.org/10.1063/1.2220642
G.L. Yuan, S.W. Or and H.L.W. Chan, J. Appl. Phys., 101, 064101 (2007); https://doi.org/10.1063/1.2433709
V.A. Khomchenko, D.V. Karpinsky, A.L. Kholkin, N.A. Sobolev, G.N. Kakazei, J.P. Araujo, I.O. Troyanchuk, B.F.O. Costa and J.A. Paixão, J. Appl. Phys., 108, 74109 (2010); https://doi.org/10.1063/1.3486500
S. Mohan, B. Subramanian, I. Bhaumik, P.K. Gupta and S.N. Jaisankar, RSC Adv., 4, 16871 (2014); https://doi.org/10.1039/C4RA00137K
R.Q. Guo, L. Fang, W. Dong, F.G. Zheng and M.R. Shen, J. Phys. Chem. C, 114, 21390 (2010); https://doi.org/10.1021/jp104660a
J.H. Shah, Z. Huaqian, R. Mehmood, A.I. Channa, J. Kazmi, L. Zhang, F. Rosei and Z. Wang, J. Mater. Chem. A Mater. Energy Sustain., 12, 11644 (2024); https://doi.org/10.1039/D4TA00886C
B. Wang, S.M. Wang, L.X. Gong and Z.F. Zhou, Ceram. Int., 38, 6643 (2012); https://doi.org/10.1016/j.ceramint.2012.05.051
J. Liu, L. Fang, F.G. Zheng, S. Ju and M.G. Shen, Appl. Phys. Lett., 95, 022511 (2009); https://doi.org/10.1063/1.3183580