Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Perovskite Based Electrode Materials for Application in Electrochemical Supercapacitors: Present Status and Future Prospects: A Review
Corresponding Author(s) : A. Samson Nesaraj
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Nanostructured electrode materials have illustrated predominant electrochemical properties in producing high-performance supercapacitors. Perovskite based nanostructures with formula ABO3 have received broad consideration due to their excellent physical and chemical characteristics such as electrically active structure, electronic conductivity, ionic conductivity, supermagnetic, photocatalytic, thermoelectric, and dielectric properties, etc. Hence, perovksite based nano-structured materials are supposed to be promising, fascinating electrode materials for designing supercapacitors with high energy storage performance. In this review article, the recent progress and advances in designing perovskite based nanostructured electrode materials is discussed, which can provide as a guideline for the next generation of supercapacitor electrode design.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Majumdar, M. Mandal and S.K. Bhattacharya, Emergent Mater., 3, 347 (2020); https://doi.org/10.1007/s42247-020-00090-5
- P.J. Hall and E.J. Bain, Energy Policy, 36, 4352 (2008); https://doi.org/10.1016/j.enpol.2008.09.037
- J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736
- B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong and M. Liu, Energy Storage Mater., 7, 32 (2017); https://doi.org/10.1016/j.ensm.2016.11.010
- L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
- E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001); https://doi.org/10.1016/S0008-6223(00)00183-4
- W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumar, A. Mehmood and E.E. Kwon, Nano Energy, 52, 441 (2018); https://doi.org/10.1016/j.nanoen.2018.08.013
- Q. Gou, S. Zhao, J. Wang, M. Li and J. Xue, Nano-Micro Lett., 12, 98 (2020); https://doi.org/10.1007/s40820-020-00430-4
- M.J. Young, A.M. Holder, S.M. George and C.B. Musgrave, Chem. Mater., 27, 1172 (2015); https://doi.org/10.1021/cm503544e
- B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao and Y. Yang, Energy Environ. Sci., 4, 2826 (2011); https://doi.org/10.1039/c1ee01198g
- S. Liu, L. Wei and H. Wang, Appl. Energy, 278, 115436 (2020); https://doi.org/10.1016/j.apenergy.2020.115436
- S. Huang, X. Zhu, S. Sarkar and Y. Zhao, APL Mater., 7, 100901 (2019); https://doi.org/10.1063/1.5116146
- S. De, S. Acharya, S. Sahoo and G. Chandra Nayak, Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier, Chap. 12, pp. 373-415 (2020); https://doi.org/10.1016/B978-0-12-819552-9.00012-9
- R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
- P. Sharma and T.S. Bhatti, Energy Convers. Manage., 51, 2901 (2010); https://doi.org/10.1016/j.enconman.2010.06.031
- P.K. Panda, A. Grigoriev, Y.K. Mishra and R. Ahuja, Nanoscale Adv., 2, 70 (2020); https://doi.org/10.1039/C9NA00307J
- B.E. Conway, Electrochem. Supercapacitors, 2, 11 (1999); https://doi.org/10.1007/978-1-4757 3058-6_2
- F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, O. Zhou, U. Wu and W. Huang, Chem. Soc. Rev., 46, 6816 (2017); https://doi.org/10.1039/C7CS00205J
- M.R. Biradar, A.V. Salkar, P.P. Morajkar, S.V. Bhosale and S.V. Bhosale, New J. Chem., 45, 5154 (2021); https://doi.org/10.1039/D0NJ05990K
- Y. Li, M. van Zijll, S. Chiang and N. Pan, J. Power Sources, 196, 6003 (2011); https://doi.org/10.1016/j.jpowsour.2011.02.092
- T. Esawy, M. Khairy, A. Hany and M.A. Mousa, Appl. Phys., A Mater. Sci. Process., 124, 566 (2018); https://doi.org/10.1007/s00339-018-1967-9
- J. Yu, N. Fu, J. Zhao, R. Liu, F. Li, Y. Du and Z. Yang, ACS Omega, 4, 15904 (2019); https://doi.org/10.1021/acsomega.9b01916
- M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
- W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui and H.N. Alshareef, Nano Lett., 11, 5165 (2011); https://doi.org/10.1021/nl2023433
- L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi and A. ter Heijne, Biotechnol. Adv., 39, 107456 (2020); https://doi.org/10.1016/j.biotechadv.2019.107456
- J. Yan, S. Li, B. Lan, Y. Wu and P.S. Lee, Adv. Funct. Mater., 30, 1902564 (2020); https://doi.org/10.1002/adfm.201902564
- X. Li and B. Wei, Nano Energy, 2, 159 (2013); https://doi.org/10.1016/j.nanoen.2012.09.008
- O.S. Okwundu, C.O. Ugwuoke and A.C. Okaro, Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 25, 105 (2019); https://doi.org/10.30544/417
- M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci., 3, 1196 (2008).
- H. Lv, Q. Pan, Y. Song, X.-X. Liu and T. Liu, Nano-Micro Lett., 12, 118 (2020); https://doi.org/10.1007/s40820-020-00451-z
- M. Huang, F. Li, F. Dong, Y.X. Zhang and L.L. Zhang, J. Mater. Chem. A Mater. Energy Sustain., 3, 21380 (2015); https://doi.org/10.1039/C5TA05523G
- P. Ratajczak, M.E. Suss, F. Kaasik and F. Béguin, Energy Storage Mater., 16, 126 (2019); https://doi.org/10.1016/j.ensm.2018.04.031
- N. Zaman, R.A. Malik, H. Alrobei, J. Kim, M. Latif, A. Hussain, A. Maqbool, R.A. Karim, M. Saleem, M. Asif Rafiq and Z. Abbas, Crystals, 10, 1043 (2020); https://doi.org/10.3390/cryst10111043
- R. Pitchai, V. Thavasi, S.G. Mhaisalkar and S. Ramakrishna, J. Mater. Chem., 21, 11040 (2011); https://doi.org/10.1039/c1jm10857c
- R.S. Kate, S.A. Khalate and R.J. Deokate, J. Alloys Compd., 734, 89 (2018); https://doi.org/10.1016/j.jallcom.2017.10.262
- A. Muzaffar, M.B. Ahamed, K. Deshmukh and J. Thirumalai, Renew. Sustain. Energy Rev., 101, 123 (2019); https://doi.org/10.1016/j.rser.2018.10.026
- P. Sharma and V. Kumar, Pramana Res. J., 8, 50 (2018).
- P. Forouzandeh, V. Kumaravel and S.C. Pillai, Catalysts, 10, 969 (2020); https://doi.org/10.3390/catal10090969
- K. Krishnan, P. Jayaraman, S. Balasubramanian and U. Mani, J. Mater. Chem. A Mater. Energy Sustain., 6, 23650 (2018); https://doi.org/10.1039/C8TA09524H
- N.L. Wu, Mater. Chem. Phys., 75, 6 (2002); https://doi.org/10.1016/S0254-0584(02)00022-6
- V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 7, 1597 (2014); https://doi.org/10.1039/c3ee44164d
- K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. khan, Y. Zhang, Z. Ouyang, Z. Guo and H. Zhang, Progr. Solid State Chem., 58, 100254 (2020); https://doi.org/10.1016/j.progsolidstchem.2019.100254
- D. Majumdar, Mater. Sci. Res. India, 15, 30 (2018); https://doi.org/10.13005/msri/150104
- E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin, J. Power Sources, 97-98, 822 (2001); https://doi.org/10.1016/S0378-7753(01)00736-4
- K. Naoi and P. Simon, Electrochem. Soc. Interface, 17, 34 (2008); https://doi.org/10.1149/2.F04081IF
- T. Chen and L. Dai, Mater. Today Commun., 16, 272 (2013); https://doi.org/10.1016/j.mattod.2013.07.002
- A. Sarfraz, A.H. Raza, M. Mirzaeian, Q. Abbas and R. Raza, Electrode Materials for Fuel Cells, In: Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands (2020).
- S.P. Jiang, L. Liu, K.P. Ong, P. Wu, J. Li and J. Pu, J. Power Sources, 176, 82 (2008); https://doi.org/10.1016/j.jpowsour.2007.10.053
- S.R. Bhandari, D.K. Yadav, B.P. Belbase, M. Zeeshan, B. Sadhukhan, D.P. Rai, R.K. Thapa, G.C. Kaphle and M.P. Ghimire, RSC Adv., 10, 16179 (2020); https://doi.org/10.1039/C9RA10775D
- N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma and D. Singh, J. Sol-Gel Sci. Technol., 86, 73 (2018); https://doi.org/10.1007/s10971-018-4593-2
- S.A. Kulkarni, S.G. Mhaisalkar, N. Mathews and P.P. Boix, Small Methods, 3, 1800231 (2019); https://doi.org/10.1002/smtd.201800231
- M. Srikanth, M.S. Ozorio and J.L.F. Da Silva, Phys. Chem. Chem. Phys., 22, 18423 (2020); https://doi.org/10.1039/D0CP03512B
- Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 10, 355 (2015); https://doi.org/10.1016/j.nantod.2015.04.009
- Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao and Q. Bao, Nano Mater. Sci., 1, 268 (2019); https://doi.org/10.1016/j.nanoms.2019.10.004
- L. Theofylaktos, O.K. Kosmatos, E. Giannakaki, E. Kourti, D. Deligiannis, M. Konstantakou and T. Stergiopoulos, Dalton Trans., 48, 9516 (2019); https://doi.org/10.1039/C9DT01485C
- R.J.H. Voorhoeve, D.W. Johnson Jr., J.P. Remeika and P.K. Gallagher, Science, 195, 827 (1977); https://doi.org/10.1126/science.195.4281.827
- A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou and Y. Shao-Horn, Nat. Commun., 4, 2439 (2013); https://doi.org/10.1038/ncomms3439
- H. Zhu, P. Zhang and S. Dai, ACS Catal., 5, 6370 (2015); https://doi.org/10.1021/acscatal.5b01667
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu and Y. ShaoHorn, Science, 358, 751 (2017); https://doi.org/10.1126/science.aam7092
- X. Xu, Y. Zhong and Z. Shao, Trends Chem., 1, 410 (2019); https://doi.org/10.1016/j.trechm.2019.05.006
- J.T.S. Irvine, Fuel Cells and Hydrogen Energy, 167 (2009); https://doi.org/10.1007/978-0-387-77708-5_8
- X.P. Wang, D.F. Zhou, G.C. Yang, S.C. Sun, Z.H. Li, H. Fu and J. Meng, Int. J. Hydrogen Energy, 39, 1005 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.096
- M. Lo Faro and A.S. Aricò, Int. J. Hydrogen Energy, 38, 14773 (2013); https://doi.org/10.1016/j.ijhydene.2013.08.122
- N.T.Q. Nguyen and H.H. Yoon, J. Power Sources, 231, 213 (2013); https://doi.org/10.1016/j.jpowsour.2013.01.011
- B.H. Park and G.M. Choi, Solid State Ion., 262, 345 (2014); https://doi.org/10.1016/j.ssi.2013.10.016
- S.J. Skinner, Int. J. Inorg. Mater., 3, 113 (2001); https://doi.org/10.1016/S1466-6049(01)00004-6
- J. George K, V.V. Halali, S. C. G, V. Suvina, M. Sakar and R.G. Balakrishna, Inorg. Chem. Front., 7, 2702 (2020); https://doi.org/10.1039/D0QI00306A
- N.F. Atta, A. Galal and A.R.M. El-Gohary, Sens. Actuators B Chem., 327, 128879 (2021); https://doi.org/10.1016/j.snb.2020.128879
- J. He, J. Sunarso, Y. Zhu, Y. Zhong, J. Miao, W. Zhou and Z. Shao, Sens. Actuators B Chem., 244, 482 (2017); https://doi.org/10.1016/j.snb.2017.01.012
- T.W. Chen, R. Ramachandran, S.M. Chen, N. Kavitha, K. Dinakaran, R. Kannan, G. Anushya, N. Bhuvana, T. Jeyapragasam, V. Mariyappan, S. Divya Rani and S. Chitra, Catalysts, 10, 938 (2020); https://doi.org/10.3390/catal10080938
- M.A. Mohamed, M.M. Hasan, I.H. Abdullah, A.M. Abdellah, A.M. Yehia, N. Ahmed, W. Abbas and N.K. Allam, Talanta, 185, 344 (2018); https://doi.org/10.1016/j.talanta.2018.03.104
- C. Sun, J.A. Alonso and J. Bian, Adv. Energy Mater., (2020); https://doi.org/10.1002/aenm.202000459
- A. Kostopoulou, K. Brintakis, N.K. Nasikas and E. Stratakis, Nanophotonics, 8, 1607 (2019); https://doi.org/10.1515/nanoph-2019-0119
- P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee and J.-S. Lee, Chem. Commun., 52, 2067 (2015); https://doi.org/10.1039/C5CC08643D
- J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, ACS Catal., 4, 2917 (2014); https://doi.org/10.1021/cs500606g
- E.A.R. Assirey, Saudi Pharm. J., 27, 817 (2019); https://doi.org/10.1016/j.jsps.2019.05.003
- T. Vijayaraghavan, R. Sivasubramanian, S. Hussain and A. Ashok, ChemistrySelect, 2, 5570 (2017); https://doi.org/10.1002/slct.201700723
- Y. Wang, L. Luo, Y. Ding, X. Zhang, Y. Xu and X. Liu, J. Electroanal. Chem., 667, 54 (2012); https://doi.org/10.1016/j.jelechem.2011.12.021
- L. Zhu, R. Ran, M. Tade, W. Wang and Z. Shao, Asia-Pac. J. Chem. Eng., 11, 338 (2016); https://doi.org/10.1002/apj.2000
- E.A. Katz, Helv. Chim. Acta, 103, e2000061 (2020); https://doi.org/10.1002/hlca.202000061
- P.C. Reshmi Varma, Perovskite Photovoltaics, 197 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00007-1
- C. Artini, J. Eur. Ceram. Soc., 37, 427 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.08.041
- H. Zhang, N. Li, K. Li and D. Xue, Acta Crystallogr., 63, 812 (2007); https://doi.org/10.1107/S0108768107046174
- S.F. Hoefler, G. Trimmel and T. Rath, Monatsh. Chem., 148, 795 (2017); https://doi.org/10.1007/s00706-017-1933-9
- L. Wu, Z. Wang, B. Zhang, L. Yu, G.M. Chow, J. Tao, M.-G. Han, H. Guo, L. Chen, E.W. Plummer, J. Zhang and Y. Zhu, Microsc. Microanal., 23(S1), 1586 (2017); https://doi.org/10.1017/S1431927617008595
- Z. Song and Q. Liu, Inorg. Chem. Front., 7, 1583 (2020); https://doi.org/10.1039/D0QI00016G
- C.N.R. Rao, Encyclopedia of Physical Science and Technology, 707 (2003); https://doi.org/10.1016/B0-12-227410-5/00554-8
- L. Clark and P. Lightfoot, Eds. A. Tressaud and K. Poeppelmeier, Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series, Progress in Fluorine Science, Elsevier, Ed.: 1, pp. 261- 284 (2016); https://doi.org/10.1016/B978-0-12-801639-8.00013-1
- S.K. Sahoo, B. Manoharan and N. Sivakumar. Perovskite Photovoltaics, 1 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00001-0
- C. L.C. Ellis, E. Smith, H. Javaid, G. Berns and D. Venkataraman. Perovskite Photovoltaics, 163 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00006-X
- M. Johnsson and P. Lemmens, Crystallography and Chemistry of Perovskites, In: Handbook of Magnetism and Advanced Magnetic Materials, Wiley (2007).
- C. Artini, J. Eur. Ceram., 37, 427 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.08.041
- A. Navrotsky, Chem. Mater., 10, 2787 (1998); https://doi.org/10.1021/cm9801901
- S.C. Watthage, Z. Song, A.B. Phillips and M. J. Heben, Perovskite Photovoltaics, Chap. 3, pp. 43-88 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00003-4
- K. Hirose, R. Wentzcovitch, D.A. Yuen and T. Lay, Treatise on Geophysics, 2, 85 (2015); https://doi.org/10.1016/B978-0-444-53802-4.00054-3
- T. Duffy, N. Madhusudhan and K.K.M. Lee, Treatise on Geophysics, 2, 149 (2015); https://doi.org/10.1016/B978-0-444-53802-4.00053-1
- M.W. Lufaso and P.M. Woodward, Acta Crystallogr. B, 60, 10 (2004); https://doi.org/10.1107/S0108768103026661
- G.B. Stracher, Coal and Peat Fires: A Global Perspective, 5, 243 (2019); https://doi.org/10.1016/B978-0-12-849885-9.00013-5
- C.H. Yan, Z.G. Yan, Y.P. Du, J. Shen, C. Zhang and W. Feng, Handbook on the Physics and Chemistry of Rare Earths, vol. 41, p. 275 (2011); https://doi.org/10.1016/B978-0-444-53590-0.00004-2
- Y. Liu, Z. Yang and S. Liu, Adv. Sci., 5, 1700471 (2018); https://doi.org/10.1002/advs.201700471
- H.U. Habermeier, Mater. Today, 10, 34 (2007); https://doi.org/10.1016/S1369-7021(07)70243-2
- T. Ye, X. Wang, X. Li, A.Q. Yan, S. Ramakrishna and J. Xu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 1255 (2017); https://doi.org/10.1039/C6TC04594D
- C.C. Stoumpos and M.G. Kanatzidis, Adv. Sci., 28, 5778 (2016); https://doi.org/10.1002/adma.201600265
- J. Ding, Z. Lian, Y. Li, S. Wang and Q. Yan, J. Phys. Chem. Lett., 9, 4221 (2018); https://doi.org/10.1021/acs.jpclett.8b01898
- B. Murali, H.K. Kolli, J. Yin, R. Ketavath, O.M. Bakr and O.F. Mohammed, ACS Mater. Lett., 2, 184 (2020); https://doi.org/10.1021/acsmaterialslett.9b00290
- M.A. Pena and L.G. Fierro, Chem. Rev., 101, 1981 (2001); https://doi.org/10.1021/cr980129f
- M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent and O.M. Bakr, Nat. Commun., 6, 8724 (2015); https://doi.org/10.1038/ncomms9724
- Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang and S. Liu, Adv. Sci., 28, 9204 (2016); https://doi.org/10.1002/adma.201601995
- Y. Jiang, M.A. Green, R. Sheng and A. Ho-Baillie, Sol. Energy Mater. Sol. Cells, 137, 253 (2015); https://doi.org/10.1016/j.solmat.2015.02.017
- Y. Dang, D. Ju, L. Wang and X. Tao, CrystEngComm, 18, 4476 (2016); https://doi.org/10.1039/C6CE00655H
- T. Ye, W. Fu, J. Wu, Z. Yu, X. Jin, H. Chen and H. Li, J. Mater. Chem. A Mater. Energy Sustain., 4, 1214 (2016); https://doi.org/10.1039/C5TA10155G
- J.N. Wilson, J.M. Frost, S.K. Wallace and A. Walsh, APL Mater., 7, 010901 (2019); https://doi.org/10.1063/1.5079633
- W.J. Yin, Y. Yan and S.H. Wei, J. Phys. Chem. Lett., 5, 3625 (2014); https://doi.org/10.1021/jz501896w
- R. Babu, L. Giribabu and S.P. Singh, Cryst. Growth Des., 18, 2645 (2018); https://doi.org/10.1021/acs.cgd.7b01767
- D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko and M.V. Kovalenko, Chem. Mater., 28, 8470 (2016); https://doi.org/10.1021/acs.chemmater.6b04298
- S.K. Sahoo, B. Manoharan and N. Sivakumar, Introduction: Why Perovskite and Perovskite Solar Cells? In: Perovskite Photovoltaics, Basic to Advanced Concepts and Implementation, Academic Press, Chap. 1, pp. 1-24 (2018).
- C. Zuo and L. Ding, Angew. Chem. Int. Ed., 56, 6528 (2017); https://doi.org/10.1002/anie.201702265
- Z. Fan, K. Sun and J. Wang, J. Mater. Chem. A Mater. Energy Sustain., 3, 18809 (2015); https://doi.org/10.1039/C5TA04235F
- S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko and W. Heiss, Nat. Photonics, 9, 444 (2015); https://doi.org/10.1038/nphoton.2015.82
- J. Ding and Q. Yan, Sci. China Mater., 60, 1063 (2017); https://doi.org/10.1007/s40843-017-9039-8
- I. Choi, S.J. Lee, J.C. Kim, Y.-G. Kim, D.-Y. Hyeon, K.S. Hong, J. Suh, D. Shin, H.Y. Jeong and K.I. Park, Appl. Surf. Sci., 511, 145614 (2020); https://doi.org/10.1016/j.apsusc.2020.145614
- Y. Huang, Y. Feng, F. Li, F. Lin, Y. Wang, X. Chen and R. Xie, TrAC Trends Analyt. Chem., 134, 116127 (2020); https://doi.org/10.1016/j.trac.2020.116127
- J. Wolanyk, X. Xiao, M. Fralaide, N.J. Lauersdorf, R. Kaudal, E. Dykstra, J. Huang, J. Shinar and R. Shinar, Sens. Actuators B Chem., 321, 128462 (2020); https://doi.org/10.1016/j.snb.2020.128462
- F. Rahimi, A.K. Jafari, C.A. Hsu, C.S. Ferekides and A.M. Hoff, Org. Electron., 75, 105397 (2019); https://doi.org/10.1016/j.orgel.2019.105397
- P. Kaur and K. Singh, Ceram. Int., 46, 5521 (2020); https://doi.org/10.1016/j.ceramint.2019.11.066
- K. Wang, C. Han, Z. Shao, J. Qiu, S. Wang and S. Liu, Adv. Funct. Mater., 31, 30 (2021); https://doi.org/10.1002/adfm.202102089
- M. Misono, Stud. Surf. Sci. Catal., 176, 67 (2013); https://doi.org/10.1016/B978-0-444-53833-8.00003-X
- J.L. Hueso, A. Caballero, J. Cotrino and A.R. González-Elipe, Catal. Commun., 8, 1739 (2007); https://doi.org/10.1016/j.catcom.2007.02.001
- B. Mohanty, S. Bhattacharjee, R.K. Parida and B.N. Parida, Mater. Today Proc., 35, 91 (2021); https://doi.org/10.1016/j.matpr.2020.03.068
- J. Lu, Y. Li and Y. Ding, Ceram. Int., 46, 7741 (2020); https://doi.org/10.1016/j.ceramint.2019.11.277
- D. Yang, W. Zhang, Y. Wang, L. Li, F. Yao, L. Miao, W. Zhao, X. Kong, Q. Feng and D. Hu, Ceram. Int., 47, 1479 (2021); https://doi.org/10.1016/j.ceramint.2020.08.274
- S. Tasleem and M. Tahir, Int. J. Hydrog. Energy, 45, 19078 (2020); https://doi.org/10.1016/j.ijhydene.2020.05.090
- S. Bhattacharjee, B. Mohanty, N.C. Nayak, R.K. Parida and B.N. Parida, Mater. Sci. Semicond. Process., 123, 105503 (2021); https://doi.org/10.1016/j.mssp.2020.105503
- S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio and J. Luo, Scr. Mater., 142, 116 (2018); https://doi.org/10.1016/j.scriptamat.2017.08.040
- H. Wang, M. Zhou, P. Choudhury and H. Luo, Appl. Mater. Today, 16, 56 (2019); https://doi.org/10.1016/j.apmt.2019.05.004
- S. Arya, P. Mahajan, R. Gupta, R. Srivastava, N.K. Tailor, S. Satapathi, R. Sumathi, R. Datt and V. Gupta, Prog. Solid State Chem., 60, 100286 (2020); https://doi.org/10.1016/j.progsolidstchem.2020.100286
- L. Zhang, J. Miao, J. Li and Q. Li, Adv. Funct. Mater., 30, 2003653 (2020); https://doi.org/10.1002/adfm.202003653
- L. He, Y. Shu, W. Li and M. Liu, J. Mater. Sci. Mater. Electron., 30, 17 (2019); https://doi.org/10.1007/s10854-018-0331-3
- H. Mo, H. Nan, X. Lang, S. Liu, L. Qiao, X. Hu and H. Tian, Ceram. Int., 44, 9733 (2018); https://doi.org/10.1016/j.ceramint.2018.02.205
- M.A. Bavio, J.E. Tasca, G.G. Acosta, M.F. Ponce, R.O. Fuentes and A. Visintin, J. Solid State Chem., 24, 699 (2020); https://doi.org/10.1007/s10008-020-04511-7
- K.H. Ho and J. Wang, J. Am. Ceram. Soc., 100, 4629 (2017); https://doi.org/10.1111/jace.14997
- T.N. Vinuth Raj, P.A. Hoskeri, H.B. Muralidhara, C.R. Manjunatha, K. Yogesh Kumar and M.S. Raghu, J. Electroanal. Chem., 858, 113830 (2020); https://doi.org/10.1016/j.jelechem.2020.113830
- Z. Xu, Y. Liu, W. Zhou, M.O. Tade and Z. Shao, ACS Appl. Mater. Interfaces, 10, 9415 (2018); https://doi.org/10.1021/acsami.7b19391
- C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, H.W. Lee and N.M. Huang, ACS Appl. Energy Mater., 1, 692 (2018); https://doi.org/10.1021/acsaem.7b00103
- A. Slonopas, H. Ryan and P. Norris, Electrochim. Acta, 307, 334 (2019); https://doi.org/10.1016/j.electacta.2019.03.221
- L.E. Oloore, M.A. Gondal, I.K. Popoola and A. Popoola, ChemElectroChem, 7, 486 (2020);
- https://doi.org/10.1002/celc.201901969
- P. Maji, A. Ray, P. Sadhukhan, A. Roy and S. Das, Mater. Lett., 227, 268 (2018); https://doi.org/10.1016/j.matlet.2018.05.101
- L.E. Oloore, M.A. Gondal, A. Popoola and I.K. Popoola, Electrochim. Acta, 361, 137082 (2020); https://doi.org/10.1016/j.electacta.2020.137082
- P. Andrièevic, X. Mettan, M. Kollár, B. Náfrádi, A. Sienkiewicz, T. Garma, L. Rossi, L. Forró and E. Horváth, ACS Photonics, 6, 967 (2019); https://doi.org/10.1021/acsphotonics.8b01653
- J. Hao, W. Li, J. Zhai and H. Chen, Mater. Sci. Eng. Rep., 135, 1 (2019); https://doi.org/10.1016/j.mser.2018.08.001
- Y. Masubuchi, S.K. Sun and S. Kikkawa, Dalton Trans., 44, 10570 (2015); https://doi.org/10.1039/C4DT03811H
- Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
- S. Somiya and R. Roy, Bull. Mater. Sci., 23, 453 (2000); https://doi.org/10.1007/BF02903883
- H.Y. Kim, J. Shin, I.C. Jang and Y.W. Ju, Energies, 13, 36 (2019); https://doi.org/10.3390/en13010036
- A. Rezanezhad, E. Rezaie, L.S. Ghadimi, A. Hajalilou, E. Abouzari-Lotf and N. Arsalani, Electrochim. Acta, 335, 135699 (2020); https://doi.org/10.1016/j.electacta.2020.135699
- J. Singh, A. Kumar, U.K. Goutam and A. Kumar, Appl. Phys., A Mater. Sci. Process., 126, 11 (2020); https://doi.org/10.1007/s00339-019-3195-3
- S. Nagamuthu, S. Vijayakumar and K.S. Ryu, Mater. Chem. Phys., 199, 543 (2017); https://doi.org/10.1016/j.matchemphys.2017.07.050
- M. Rafique, S. Hajra, M.Z. Iqbal, G. Nabi, S.S.A. Gillani and M. Bilal Tahir, Int. J. Energy Res., 45, 4145 (2021); https://doi.org/10.1002/er.6075
- H. Wang, Q. Luo, M. Sun, X. Yin and L. Wang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 12355 (2020); https://doi.org/10.1039/D0TC02354J
- A.S. Paluch, S. Jayaraman, J.K. Shah and E.J. Maginn, J. Chem. Phys., 133, 124504 (2010); https://doi.org/10.1063/1.3478539
- M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2115, 030129 (2019); https://doi.org/10.1063/1.5112968
- W. Mi, C. Dai, S. Zhou, J. Yang, Q. Li and Q. Xu, Mater. Lett., 227, 66 (2018); https://doi.org/10.1016/j.matlet.2018.04.131
- K.P. Cheng, R.J. Gu and L.X. Wen, RSC Adv., 10, 11681 (2020); https://doi.org/10.1039/D0RA01411G
- M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2082, 060001 (2019); https://doi.org/10.1063/1.5093874
- P. Lannelongue, S. Le Vot, O. Fontaine, T. Brousse and F. Favier, Electrochim. Acta, 326, 134886 (2019); https://doi.org/10.1016/j.electacta.2019.134886
- M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2265, 030631 (2020); https://doi.org/10.1063/5.0016695
- R. Sui and P. Charpentier, Chem. Rev., 112, 3057 (2012); https://doi.org/10.1021/cr2000465
- Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Z. Sun and J. Chen, Electrochim. Acta, 253, 422 (2017); https://doi.org/10.1016/j.electacta.2017.09.076
- A.K. Tomar, G. Singh and R.K. Sharma, ChemSusChem, 11, 4123 (2018); https://doi.org/10.1002/cssc.201801869
- G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen and Z. Luo, Ceram. Int., 44, 21982 (2018); https://doi.org/10.1016/j.ceramint.2018.08.313
- A.K. Tomar, G. Singh and R.K. Sharma, J. Power Sources, 426, 223 (2019); https://doi.org/10.1016/j.jpowsour.2019.04.049
- N. Kitchamsetti, R.J. Choudhary, D.M. Phase and R.S. Devan, RSC Adv., 10, 23446 (2020); https://doi.org/10.1039/D0RA04052E
- N. Kitchamsetti, Y.R. Ma, P.M. Shirage and R.S. Devan, J. Alloys Compd., 833, 155134 (2020); https://doi.org/10.1016/j.jallcom.2020.155134
- A.V. Nikam, B.L.V. Prasad and A.A. Kulkarni, CrystEngComm, 20, 5091 (2018); https://doi.org/10.1039/C8CE00487K
- Y.B. Pottathara, Y. Grohens, V. Kokol, N. Kalarikkal and S. Thomas, Nanomater. Synth., 1-25 (2019); https://doi.org/10.1016/B978-0-12-815751-0.00001-8
- A. Kumar and A. Kumar, Ceram. Int., 45, 14105 (2019); https://doi.org/10.1016/j.ceramint.2019.04.110
- N.F. Mansoorie, J. Singh and A. Kumar, Mater. Sci. Semicond. Process., 107, 104826 (2020); https://doi.org/10.1016/j.mssp.2019.104826
- M. Ickler, M. Devi, I. Rogge, J. Singh and A. Kumar, J. Mater. Sci. Mater. Electron., 31, 6977 (2020); https://doi.org/10.1007/s10854-020-03263-4
- A. Kumar, A. Kumar and A. Kumar, Solid State Sci., 105, 106252 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106252
- J. Singh and A. Kumar, Mater. Sci. Semicond. Process., 99, 8 (2019); https://doi.org/10.1016/j.mssp.2019.04.007
- P. Palanisamy, K. Thangavel, S. Murugesan, S. Marappan, M. Chavali, P.F. Siril and D.V. Perumal, J. Electroanal. Chem., 833, 93 (2019); https://doi.org/10.1016/j.jelechem.2018.11.026
References
D. Majumdar, M. Mandal and S.K. Bhattacharya, Emergent Mater., 3, 347 (2020); https://doi.org/10.1007/s42247-020-00090-5
P.J. Hall and E.J. Bain, Energy Policy, 36, 4352 (2008); https://doi.org/10.1016/j.enpol.2008.09.037
J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736
B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong and M. Liu, Energy Storage Mater., 7, 32 (2017); https://doi.org/10.1016/j.ensm.2016.11.010
L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001); https://doi.org/10.1016/S0008-6223(00)00183-4
W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumar, A. Mehmood and E.E. Kwon, Nano Energy, 52, 441 (2018); https://doi.org/10.1016/j.nanoen.2018.08.013
Q. Gou, S. Zhao, J. Wang, M. Li and J. Xue, Nano-Micro Lett., 12, 98 (2020); https://doi.org/10.1007/s40820-020-00430-4
M.J. Young, A.M. Holder, S.M. George and C.B. Musgrave, Chem. Mater., 27, 1172 (2015); https://doi.org/10.1021/cm503544e
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao and Y. Yang, Energy Environ. Sci., 4, 2826 (2011); https://doi.org/10.1039/c1ee01198g
S. Liu, L. Wei and H. Wang, Appl. Energy, 278, 115436 (2020); https://doi.org/10.1016/j.apenergy.2020.115436
S. Huang, X. Zhu, S. Sarkar and Y. Zhao, APL Mater., 7, 100901 (2019); https://doi.org/10.1063/1.5116146
S. De, S. Acharya, S. Sahoo and G. Chandra Nayak, Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier, Chap. 12, pp. 373-415 (2020); https://doi.org/10.1016/B978-0-12-819552-9.00012-9
R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
P. Sharma and T.S. Bhatti, Energy Convers. Manage., 51, 2901 (2010); https://doi.org/10.1016/j.enconman.2010.06.031
P.K. Panda, A. Grigoriev, Y.K. Mishra and R. Ahuja, Nanoscale Adv., 2, 70 (2020); https://doi.org/10.1039/C9NA00307J
B.E. Conway, Electrochem. Supercapacitors, 2, 11 (1999); https://doi.org/10.1007/978-1-4757 3058-6_2
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, O. Zhou, U. Wu and W. Huang, Chem. Soc. Rev., 46, 6816 (2017); https://doi.org/10.1039/C7CS00205J
M.R. Biradar, A.V. Salkar, P.P. Morajkar, S.V. Bhosale and S.V. Bhosale, New J. Chem., 45, 5154 (2021); https://doi.org/10.1039/D0NJ05990K
Y. Li, M. van Zijll, S. Chiang and N. Pan, J. Power Sources, 196, 6003 (2011); https://doi.org/10.1016/j.jpowsour.2011.02.092
T. Esawy, M. Khairy, A. Hany and M.A. Mousa, Appl. Phys., A Mater. Sci. Process., 124, 566 (2018); https://doi.org/10.1007/s00339-018-1967-9
J. Yu, N. Fu, J. Zhao, R. Liu, F. Li, Y. Du and Z. Yang, ACS Omega, 4, 15904 (2019); https://doi.org/10.1021/acsomega.9b01916
M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour and D.W. Rooney, Environ. Chem. Lett., 19, 375 (2021); https://doi.org/10.1007/s10311-020-01075-w
W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui and H.N. Alshareef, Nano Lett., 11, 5165 (2011); https://doi.org/10.1021/nl2023433
L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi and A. ter Heijne, Biotechnol. Adv., 39, 107456 (2020); https://doi.org/10.1016/j.biotechadv.2019.107456
J. Yan, S. Li, B. Lan, Y. Wu and P.S. Lee, Adv. Funct. Mater., 30, 1902564 (2020); https://doi.org/10.1002/adfm.201902564
X. Li and B. Wei, Nano Energy, 2, 159 (2013); https://doi.org/10.1016/j.nanoen.2012.09.008
O.S. Okwundu, C.O. Ugwuoke and A.C. Okaro, Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 25, 105 (2019); https://doi.org/10.30544/417
M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci., 3, 1196 (2008).
H. Lv, Q. Pan, Y. Song, X.-X. Liu and T. Liu, Nano-Micro Lett., 12, 118 (2020); https://doi.org/10.1007/s40820-020-00451-z
M. Huang, F. Li, F. Dong, Y.X. Zhang and L.L. Zhang, J. Mater. Chem. A Mater. Energy Sustain., 3, 21380 (2015); https://doi.org/10.1039/C5TA05523G
P. Ratajczak, M.E. Suss, F. Kaasik and F. Béguin, Energy Storage Mater., 16, 126 (2019); https://doi.org/10.1016/j.ensm.2018.04.031
N. Zaman, R.A. Malik, H. Alrobei, J. Kim, M. Latif, A. Hussain, A. Maqbool, R.A. Karim, M. Saleem, M. Asif Rafiq and Z. Abbas, Crystals, 10, 1043 (2020); https://doi.org/10.3390/cryst10111043
R. Pitchai, V. Thavasi, S.G. Mhaisalkar and S. Ramakrishna, J. Mater. Chem., 21, 11040 (2011); https://doi.org/10.1039/c1jm10857c
R.S. Kate, S.A. Khalate and R.J. Deokate, J. Alloys Compd., 734, 89 (2018); https://doi.org/10.1016/j.jallcom.2017.10.262
A. Muzaffar, M.B. Ahamed, K. Deshmukh and J. Thirumalai, Renew. Sustain. Energy Rev., 101, 123 (2019); https://doi.org/10.1016/j.rser.2018.10.026
P. Sharma and V. Kumar, Pramana Res. J., 8, 50 (2018).
P. Forouzandeh, V. Kumaravel and S.C. Pillai, Catalysts, 10, 969 (2020); https://doi.org/10.3390/catal10090969
K. Krishnan, P. Jayaraman, S. Balasubramanian and U. Mani, J. Mater. Chem. A Mater. Energy Sustain., 6, 23650 (2018); https://doi.org/10.1039/C8TA09524H
N.L. Wu, Mater. Chem. Phys., 75, 6 (2002); https://doi.org/10.1016/S0254-0584(02)00022-6
V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 7, 1597 (2014); https://doi.org/10.1039/c3ee44164d
K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. khan, Y. Zhang, Z. Ouyang, Z. Guo and H. Zhang, Progr. Solid State Chem., 58, 100254 (2020); https://doi.org/10.1016/j.progsolidstchem.2019.100254
D. Majumdar, Mater. Sci. Res. India, 15, 30 (2018); https://doi.org/10.13005/msri/150104
E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin, J. Power Sources, 97-98, 822 (2001); https://doi.org/10.1016/S0378-7753(01)00736-4
K. Naoi and P. Simon, Electrochem. Soc. Interface, 17, 34 (2008); https://doi.org/10.1149/2.F04081IF
T. Chen and L. Dai, Mater. Today Commun., 16, 272 (2013); https://doi.org/10.1016/j.mattod.2013.07.002
A. Sarfraz, A.H. Raza, M. Mirzaeian, Q. Abbas and R. Raza, Electrode Materials for Fuel Cells, In: Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands (2020).
S.P. Jiang, L. Liu, K.P. Ong, P. Wu, J. Li and J. Pu, J. Power Sources, 176, 82 (2008); https://doi.org/10.1016/j.jpowsour.2007.10.053
S.R. Bhandari, D.K. Yadav, B.P. Belbase, M. Zeeshan, B. Sadhukhan, D.P. Rai, R.K. Thapa, G.C. Kaphle and M.P. Ghimire, RSC Adv., 10, 16179 (2020); https://doi.org/10.1039/C9RA10775D
N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma and D. Singh, J. Sol-Gel Sci. Technol., 86, 73 (2018); https://doi.org/10.1007/s10971-018-4593-2
S.A. Kulkarni, S.G. Mhaisalkar, N. Mathews and P.P. Boix, Small Methods, 3, 1800231 (2019); https://doi.org/10.1002/smtd.201800231
M. Srikanth, M.S. Ozorio and J.L.F. Da Silva, Phys. Chem. Chem. Phys., 22, 18423 (2020); https://doi.org/10.1039/D0CP03512B
Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 10, 355 (2015); https://doi.org/10.1016/j.nantod.2015.04.009
Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao and Q. Bao, Nano Mater. Sci., 1, 268 (2019); https://doi.org/10.1016/j.nanoms.2019.10.004
L. Theofylaktos, O.K. Kosmatos, E. Giannakaki, E. Kourti, D. Deligiannis, M. Konstantakou and T. Stergiopoulos, Dalton Trans., 48, 9516 (2019); https://doi.org/10.1039/C9DT01485C
R.J.H. Voorhoeve, D.W. Johnson Jr., J.P. Remeika and P.K. Gallagher, Science, 195, 827 (1977); https://doi.org/10.1126/science.195.4281.827
A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou and Y. Shao-Horn, Nat. Commun., 4, 2439 (2013); https://doi.org/10.1038/ncomms3439
H. Zhu, P. Zhang and S. Dai, ACS Catal., 5, 6370 (2015); https://doi.org/10.1021/acscatal.5b01667
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu and Y. ShaoHorn, Science, 358, 751 (2017); https://doi.org/10.1126/science.aam7092
X. Xu, Y. Zhong and Z. Shao, Trends Chem., 1, 410 (2019); https://doi.org/10.1016/j.trechm.2019.05.006
J.T.S. Irvine, Fuel Cells and Hydrogen Energy, 167 (2009); https://doi.org/10.1007/978-0-387-77708-5_8
X.P. Wang, D.F. Zhou, G.C. Yang, S.C. Sun, Z.H. Li, H. Fu and J. Meng, Int. J. Hydrogen Energy, 39, 1005 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.096
M. Lo Faro and A.S. Aricò, Int. J. Hydrogen Energy, 38, 14773 (2013); https://doi.org/10.1016/j.ijhydene.2013.08.122
N.T.Q. Nguyen and H.H. Yoon, J. Power Sources, 231, 213 (2013); https://doi.org/10.1016/j.jpowsour.2013.01.011
B.H. Park and G.M. Choi, Solid State Ion., 262, 345 (2014); https://doi.org/10.1016/j.ssi.2013.10.016
S.J. Skinner, Int. J. Inorg. Mater., 3, 113 (2001); https://doi.org/10.1016/S1466-6049(01)00004-6
J. George K, V.V. Halali, S. C. G, V. Suvina, M. Sakar and R.G. Balakrishna, Inorg. Chem. Front., 7, 2702 (2020); https://doi.org/10.1039/D0QI00306A
N.F. Atta, A. Galal and A.R.M. El-Gohary, Sens. Actuators B Chem., 327, 128879 (2021); https://doi.org/10.1016/j.snb.2020.128879
J. He, J. Sunarso, Y. Zhu, Y. Zhong, J. Miao, W. Zhou and Z. Shao, Sens. Actuators B Chem., 244, 482 (2017); https://doi.org/10.1016/j.snb.2017.01.012
T.W. Chen, R. Ramachandran, S.M. Chen, N. Kavitha, K. Dinakaran, R. Kannan, G. Anushya, N. Bhuvana, T. Jeyapragasam, V. Mariyappan, S. Divya Rani and S. Chitra, Catalysts, 10, 938 (2020); https://doi.org/10.3390/catal10080938
M.A. Mohamed, M.M. Hasan, I.H. Abdullah, A.M. Abdellah, A.M. Yehia, N. Ahmed, W. Abbas and N.K. Allam, Talanta, 185, 344 (2018); https://doi.org/10.1016/j.talanta.2018.03.104
C. Sun, J.A. Alonso and J. Bian, Adv. Energy Mater., (2020); https://doi.org/10.1002/aenm.202000459
A. Kostopoulou, K. Brintakis, N.K. Nasikas and E. Stratakis, Nanophotonics, 8, 1607 (2019); https://doi.org/10.1515/nanoph-2019-0119
P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee and J.-S. Lee, Chem. Commun., 52, 2067 (2015); https://doi.org/10.1039/C5CC08643D
J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, ACS Catal., 4, 2917 (2014); https://doi.org/10.1021/cs500606g
E.A.R. Assirey, Saudi Pharm. J., 27, 817 (2019); https://doi.org/10.1016/j.jsps.2019.05.003
T. Vijayaraghavan, R. Sivasubramanian, S. Hussain and A. Ashok, ChemistrySelect, 2, 5570 (2017); https://doi.org/10.1002/slct.201700723
Y. Wang, L. Luo, Y. Ding, X. Zhang, Y. Xu and X. Liu, J. Electroanal. Chem., 667, 54 (2012); https://doi.org/10.1016/j.jelechem.2011.12.021
L. Zhu, R. Ran, M. Tade, W. Wang and Z. Shao, Asia-Pac. J. Chem. Eng., 11, 338 (2016); https://doi.org/10.1002/apj.2000
E.A. Katz, Helv. Chim. Acta, 103, e2000061 (2020); https://doi.org/10.1002/hlca.202000061
P.C. Reshmi Varma, Perovskite Photovoltaics, 197 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00007-1
C. Artini, J. Eur. Ceram. Soc., 37, 427 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.08.041
H. Zhang, N. Li, K. Li and D. Xue, Acta Crystallogr., 63, 812 (2007); https://doi.org/10.1107/S0108768107046174
S.F. Hoefler, G. Trimmel and T. Rath, Monatsh. Chem., 148, 795 (2017); https://doi.org/10.1007/s00706-017-1933-9
L. Wu, Z. Wang, B. Zhang, L. Yu, G.M. Chow, J. Tao, M.-G. Han, H. Guo, L. Chen, E.W. Plummer, J. Zhang and Y. Zhu, Microsc. Microanal., 23(S1), 1586 (2017); https://doi.org/10.1017/S1431927617008595
Z. Song and Q. Liu, Inorg. Chem. Front., 7, 1583 (2020); https://doi.org/10.1039/D0QI00016G
C.N.R. Rao, Encyclopedia of Physical Science and Technology, 707 (2003); https://doi.org/10.1016/B0-12-227410-5/00554-8
L. Clark and P. Lightfoot, Eds. A. Tressaud and K. Poeppelmeier, Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series, Progress in Fluorine Science, Elsevier, Ed.: 1, pp. 261- 284 (2016); https://doi.org/10.1016/B978-0-12-801639-8.00013-1
S.K. Sahoo, B. Manoharan and N. Sivakumar. Perovskite Photovoltaics, 1 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00001-0
C. L.C. Ellis, E. Smith, H. Javaid, G. Berns and D. Venkataraman. Perovskite Photovoltaics, 163 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00006-X
M. Johnsson and P. Lemmens, Crystallography and Chemistry of Perovskites, In: Handbook of Magnetism and Advanced Magnetic Materials, Wiley (2007).
C. Artini, J. Eur. Ceram., 37, 427 (2017); https://doi.org/10.1016/j.jeurceramsoc.2016.08.041
A. Navrotsky, Chem. Mater., 10, 2787 (1998); https://doi.org/10.1021/cm9801901
S.C. Watthage, Z. Song, A.B. Phillips and M. J. Heben, Perovskite Photovoltaics, Chap. 3, pp. 43-88 (2018); https://doi.org/10.1016/B978-0-12-812915-9.00003-4
K. Hirose, R. Wentzcovitch, D.A. Yuen and T. Lay, Treatise on Geophysics, 2, 85 (2015); https://doi.org/10.1016/B978-0-444-53802-4.00054-3
T. Duffy, N. Madhusudhan and K.K.M. Lee, Treatise on Geophysics, 2, 149 (2015); https://doi.org/10.1016/B978-0-444-53802-4.00053-1
M.W. Lufaso and P.M. Woodward, Acta Crystallogr. B, 60, 10 (2004); https://doi.org/10.1107/S0108768103026661
G.B. Stracher, Coal and Peat Fires: A Global Perspective, 5, 243 (2019); https://doi.org/10.1016/B978-0-12-849885-9.00013-5
C.H. Yan, Z.G. Yan, Y.P. Du, J. Shen, C. Zhang and W. Feng, Handbook on the Physics and Chemistry of Rare Earths, vol. 41, p. 275 (2011); https://doi.org/10.1016/B978-0-444-53590-0.00004-2
Y. Liu, Z. Yang and S. Liu, Adv. Sci., 5, 1700471 (2018); https://doi.org/10.1002/advs.201700471
H.U. Habermeier, Mater. Today, 10, 34 (2007); https://doi.org/10.1016/S1369-7021(07)70243-2
T. Ye, X. Wang, X. Li, A.Q. Yan, S. Ramakrishna and J. Xu, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 1255 (2017); https://doi.org/10.1039/C6TC04594D
C.C. Stoumpos and M.G. Kanatzidis, Adv. Sci., 28, 5778 (2016); https://doi.org/10.1002/adma.201600265
J. Ding, Z. Lian, Y. Li, S. Wang and Q. Yan, J. Phys. Chem. Lett., 9, 4221 (2018); https://doi.org/10.1021/acs.jpclett.8b01898
B. Murali, H.K. Kolli, J. Yin, R. Ketavath, O.M. Bakr and O.F. Mohammed, ACS Mater. Lett., 2, 184 (2020); https://doi.org/10.1021/acsmaterialslett.9b00290
M.A. Pena and L.G. Fierro, Chem. Rev., 101, 1981 (2001); https://doi.org/10.1021/cr980129f
M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent and O.M. Bakr, Nat. Commun., 6, 8724 (2015); https://doi.org/10.1038/ncomms9724
Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang and S. Liu, Adv. Sci., 28, 9204 (2016); https://doi.org/10.1002/adma.201601995
Y. Jiang, M.A. Green, R. Sheng and A. Ho-Baillie, Sol. Energy Mater. Sol. Cells, 137, 253 (2015); https://doi.org/10.1016/j.solmat.2015.02.017
Y. Dang, D. Ju, L. Wang and X. Tao, CrystEngComm, 18, 4476 (2016); https://doi.org/10.1039/C6CE00655H
T. Ye, W. Fu, J. Wu, Z. Yu, X. Jin, H. Chen and H. Li, J. Mater. Chem. A Mater. Energy Sustain., 4, 1214 (2016); https://doi.org/10.1039/C5TA10155G
J.N. Wilson, J.M. Frost, S.K. Wallace and A. Walsh, APL Mater., 7, 010901 (2019); https://doi.org/10.1063/1.5079633
W.J. Yin, Y. Yan and S.H. Wei, J. Phys. Chem. Lett., 5, 3625 (2014); https://doi.org/10.1021/jz501896w
R. Babu, L. Giribabu and S.P. Singh, Cryst. Growth Des., 18, 2645 (2018); https://doi.org/10.1021/acs.cgd.7b01767
D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko and M.V. Kovalenko, Chem. Mater., 28, 8470 (2016); https://doi.org/10.1021/acs.chemmater.6b04298
S.K. Sahoo, B. Manoharan and N. Sivakumar, Introduction: Why Perovskite and Perovskite Solar Cells? In: Perovskite Photovoltaics, Basic to Advanced Concepts and Implementation, Academic Press, Chap. 1, pp. 1-24 (2018).
C. Zuo and L. Ding, Angew. Chem. Int. Ed., 56, 6528 (2017); https://doi.org/10.1002/anie.201702265
Z. Fan, K. Sun and J. Wang, J. Mater. Chem. A Mater. Energy Sustain., 3, 18809 (2015); https://doi.org/10.1039/C5TA04235F
S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko and W. Heiss, Nat. Photonics, 9, 444 (2015); https://doi.org/10.1038/nphoton.2015.82
J. Ding and Q. Yan, Sci. China Mater., 60, 1063 (2017); https://doi.org/10.1007/s40843-017-9039-8
I. Choi, S.J. Lee, J.C. Kim, Y.-G. Kim, D.-Y. Hyeon, K.S. Hong, J. Suh, D. Shin, H.Y. Jeong and K.I. Park, Appl. Surf. Sci., 511, 145614 (2020); https://doi.org/10.1016/j.apsusc.2020.145614
Y. Huang, Y. Feng, F. Li, F. Lin, Y. Wang, X. Chen and R. Xie, TrAC Trends Analyt. Chem., 134, 116127 (2020); https://doi.org/10.1016/j.trac.2020.116127
J. Wolanyk, X. Xiao, M. Fralaide, N.J. Lauersdorf, R. Kaudal, E. Dykstra, J. Huang, J. Shinar and R. Shinar, Sens. Actuators B Chem., 321, 128462 (2020); https://doi.org/10.1016/j.snb.2020.128462
F. Rahimi, A.K. Jafari, C.A. Hsu, C.S. Ferekides and A.M. Hoff, Org. Electron., 75, 105397 (2019); https://doi.org/10.1016/j.orgel.2019.105397
P. Kaur and K. Singh, Ceram. Int., 46, 5521 (2020); https://doi.org/10.1016/j.ceramint.2019.11.066
K. Wang, C. Han, Z. Shao, J. Qiu, S. Wang and S. Liu, Adv. Funct. Mater., 31, 30 (2021); https://doi.org/10.1002/adfm.202102089
M. Misono, Stud. Surf. Sci. Catal., 176, 67 (2013); https://doi.org/10.1016/B978-0-444-53833-8.00003-X
J.L. Hueso, A. Caballero, J. Cotrino and A.R. González-Elipe, Catal. Commun., 8, 1739 (2007); https://doi.org/10.1016/j.catcom.2007.02.001
B. Mohanty, S. Bhattacharjee, R.K. Parida and B.N. Parida, Mater. Today Proc., 35, 91 (2021); https://doi.org/10.1016/j.matpr.2020.03.068
J. Lu, Y. Li and Y. Ding, Ceram. Int., 46, 7741 (2020); https://doi.org/10.1016/j.ceramint.2019.11.277
D. Yang, W. Zhang, Y. Wang, L. Li, F. Yao, L. Miao, W. Zhao, X. Kong, Q. Feng and D. Hu, Ceram. Int., 47, 1479 (2021); https://doi.org/10.1016/j.ceramint.2020.08.274
S. Tasleem and M. Tahir, Int. J. Hydrog. Energy, 45, 19078 (2020); https://doi.org/10.1016/j.ijhydene.2020.05.090
S. Bhattacharjee, B. Mohanty, N.C. Nayak, R.K. Parida and B.N. Parida, Mater. Sci. Semicond. Process., 123, 105503 (2021); https://doi.org/10.1016/j.mssp.2020.105503
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio and J. Luo, Scr. Mater., 142, 116 (2018); https://doi.org/10.1016/j.scriptamat.2017.08.040
H. Wang, M. Zhou, P. Choudhury and H. Luo, Appl. Mater. Today, 16, 56 (2019); https://doi.org/10.1016/j.apmt.2019.05.004
S. Arya, P. Mahajan, R. Gupta, R. Srivastava, N.K. Tailor, S. Satapathi, R. Sumathi, R. Datt and V. Gupta, Prog. Solid State Chem., 60, 100286 (2020); https://doi.org/10.1016/j.progsolidstchem.2020.100286
L. Zhang, J. Miao, J. Li and Q. Li, Adv. Funct. Mater., 30, 2003653 (2020); https://doi.org/10.1002/adfm.202003653
L. He, Y. Shu, W. Li and M. Liu, J. Mater. Sci. Mater. Electron., 30, 17 (2019); https://doi.org/10.1007/s10854-018-0331-3
H. Mo, H. Nan, X. Lang, S. Liu, L. Qiao, X. Hu and H. Tian, Ceram. Int., 44, 9733 (2018); https://doi.org/10.1016/j.ceramint.2018.02.205
M.A. Bavio, J.E. Tasca, G.G. Acosta, M.F. Ponce, R.O. Fuentes and A. Visintin, J. Solid State Chem., 24, 699 (2020); https://doi.org/10.1007/s10008-020-04511-7
K.H. Ho and J. Wang, J. Am. Ceram. Soc., 100, 4629 (2017); https://doi.org/10.1111/jace.14997
T.N. Vinuth Raj, P.A. Hoskeri, H.B. Muralidhara, C.R. Manjunatha, K. Yogesh Kumar and M.S. Raghu, J. Electroanal. Chem., 858, 113830 (2020); https://doi.org/10.1016/j.jelechem.2020.113830
Z. Xu, Y. Liu, W. Zhou, M.O. Tade and Z. Shao, ACS Appl. Mater. Interfaces, 10, 9415 (2018); https://doi.org/10.1021/acsami.7b19391
C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, H.W. Lee and N.M. Huang, ACS Appl. Energy Mater., 1, 692 (2018); https://doi.org/10.1021/acsaem.7b00103
A. Slonopas, H. Ryan and P. Norris, Electrochim. Acta, 307, 334 (2019); https://doi.org/10.1016/j.electacta.2019.03.221
L.E. Oloore, M.A. Gondal, I.K. Popoola and A. Popoola, ChemElectroChem, 7, 486 (2020);
https://doi.org/10.1002/celc.201901969
P. Maji, A. Ray, P. Sadhukhan, A. Roy and S. Das, Mater. Lett., 227, 268 (2018); https://doi.org/10.1016/j.matlet.2018.05.101
L.E. Oloore, M.A. Gondal, A. Popoola and I.K. Popoola, Electrochim. Acta, 361, 137082 (2020); https://doi.org/10.1016/j.electacta.2020.137082
P. Andrièevic, X. Mettan, M. Kollár, B. Náfrádi, A. Sienkiewicz, T. Garma, L. Rossi, L. Forró and E. Horváth, ACS Photonics, 6, 967 (2019); https://doi.org/10.1021/acsphotonics.8b01653
J. Hao, W. Li, J. Zhai and H. Chen, Mater. Sci. Eng. Rep., 135, 1 (2019); https://doi.org/10.1016/j.mser.2018.08.001
Y. Masubuchi, S.K. Sun and S. Kikkawa, Dalton Trans., 44, 10570 (2015); https://doi.org/10.1039/C4DT03811H
Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
S. Somiya and R. Roy, Bull. Mater. Sci., 23, 453 (2000); https://doi.org/10.1007/BF02903883
H.Y. Kim, J. Shin, I.C. Jang and Y.W. Ju, Energies, 13, 36 (2019); https://doi.org/10.3390/en13010036
A. Rezanezhad, E. Rezaie, L.S. Ghadimi, A. Hajalilou, E. Abouzari-Lotf and N. Arsalani, Electrochim. Acta, 335, 135699 (2020); https://doi.org/10.1016/j.electacta.2020.135699
J. Singh, A. Kumar, U.K. Goutam and A. Kumar, Appl. Phys., A Mater. Sci. Process., 126, 11 (2020); https://doi.org/10.1007/s00339-019-3195-3
S. Nagamuthu, S. Vijayakumar and K.S. Ryu, Mater. Chem. Phys., 199, 543 (2017); https://doi.org/10.1016/j.matchemphys.2017.07.050
M. Rafique, S. Hajra, M.Z. Iqbal, G. Nabi, S.S.A. Gillani and M. Bilal Tahir, Int. J. Energy Res., 45, 4145 (2021); https://doi.org/10.1002/er.6075
H. Wang, Q. Luo, M. Sun, X. Yin and L. Wang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 12355 (2020); https://doi.org/10.1039/D0TC02354J
A.S. Paluch, S. Jayaraman, J.K. Shah and E.J. Maginn, J. Chem. Phys., 133, 124504 (2010); https://doi.org/10.1063/1.3478539
M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2115, 030129 (2019); https://doi.org/10.1063/1.5112968
W. Mi, C. Dai, S. Zhou, J. Yang, Q. Li and Q. Xu, Mater. Lett., 227, 66 (2018); https://doi.org/10.1016/j.matlet.2018.04.131
K.P. Cheng, R.J. Gu and L.X. Wen, RSC Adv., 10, 11681 (2020); https://doi.org/10.1039/D0RA01411G
M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2082, 060001 (2019); https://doi.org/10.1063/1.5093874
P. Lannelongue, S. Le Vot, O. Fontaine, T. Brousse and F. Favier, Electrochim. Acta, 326, 134886 (2019); https://doi.org/10.1016/j.electacta.2019.134886
M.P. Harikrishnan and A.C. Bose, AIP Conf. Proc., 2265, 030631 (2020); https://doi.org/10.1063/5.0016695
R. Sui and P. Charpentier, Chem. Rev., 112, 3057 (2012); https://doi.org/10.1021/cr2000465
Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Z. Sun and J. Chen, Electrochim. Acta, 253, 422 (2017); https://doi.org/10.1016/j.electacta.2017.09.076
A.K. Tomar, G. Singh and R.K. Sharma, ChemSusChem, 11, 4123 (2018); https://doi.org/10.1002/cssc.201801869
G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen and Z. Luo, Ceram. Int., 44, 21982 (2018); https://doi.org/10.1016/j.ceramint.2018.08.313
A.K. Tomar, G. Singh and R.K. Sharma, J. Power Sources, 426, 223 (2019); https://doi.org/10.1016/j.jpowsour.2019.04.049
N. Kitchamsetti, R.J. Choudhary, D.M. Phase and R.S. Devan, RSC Adv., 10, 23446 (2020); https://doi.org/10.1039/D0RA04052E
N. Kitchamsetti, Y.R. Ma, P.M. Shirage and R.S. Devan, J. Alloys Compd., 833, 155134 (2020); https://doi.org/10.1016/j.jallcom.2020.155134
A.V. Nikam, B.L.V. Prasad and A.A. Kulkarni, CrystEngComm, 20, 5091 (2018); https://doi.org/10.1039/C8CE00487K
Y.B. Pottathara, Y. Grohens, V. Kokol, N. Kalarikkal and S. Thomas, Nanomater. Synth., 1-25 (2019); https://doi.org/10.1016/B978-0-12-815751-0.00001-8
A. Kumar and A. Kumar, Ceram. Int., 45, 14105 (2019); https://doi.org/10.1016/j.ceramint.2019.04.110
N.F. Mansoorie, J. Singh and A. Kumar, Mater. Sci. Semicond. Process., 107, 104826 (2020); https://doi.org/10.1016/j.mssp.2019.104826
M. Ickler, M. Devi, I. Rogge, J. Singh and A. Kumar, J. Mater. Sci. Mater. Electron., 31, 6977 (2020); https://doi.org/10.1007/s10854-020-03263-4
A. Kumar, A. Kumar and A. Kumar, Solid State Sci., 105, 106252 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106252
J. Singh and A. Kumar, Mater. Sci. Semicond. Process., 99, 8 (2019); https://doi.org/10.1016/j.mssp.2019.04.007
P. Palanisamy, K. Thangavel, S. Murugesan, S. Marappan, M. Chavali, P.F. Siril and D.V. Perumal, J. Electroanal. Chem., 833, 93 (2019); https://doi.org/10.1016/j.jelechem.2018.11.026