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INTRODUCTION

The increasing energy demand needs researchers to explore
new methods for designing electrode materials and evaluating
their energy storage performances to create exceedingly prog-
ressed energy storage systems [1-6]. In energy storage frame-
works, supercapacitor has received widespread consideration
recently due to their good cycle stability, excellent power density
and quick charge-discharge properties [7-10]. So far, super-
capacitors have been used in combination with batteries to
supply extra power required in numerous areas [11-13]. But
they cannot be utilized in these applications as independent
component, because of their energy density is lesser than that
of batteries [14-17]. The scientific community is currently
working to significantly progress the energy storage execution
of supercapacitors through the production of new electrode
materials and innovative device plan [18-21].

There are numerous electrode materials showing required
characteristics, such as good cycle stability, high specific
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capacitance and large rate capability [22-25]. In designing high
performance supercapacitors, nanostructured electrode materials
have outlined overwhelming electrochemical characteristics
[26-29]. Nanostructuring of electrode materials may be an
attainable strategy to significantly progress the electrode surface
area, helping to upgrade the specific capacitance [30-33]. More-
over, nanostructured materials show good strain settlement that
advances good cycle life and larger electrode-electrolyte surface
area driving to fast charge-discharge rates [34-46]. Among
them, perovskite based nanostructures have received wide-
spread consideration recently. Perovskite is a mineral of calcium
titanium oxide, which composed of calcium titanate, with
formula CaTiO3 [47]. Perovskites showed variety of physical
and chemical characteristics such as ionic conductivity [48],
electrically dynamic structure, electronic conductivity [49],
superparamagnetic [50], photocatalytic [51], thermoelectric,
and dielectric properties [52]. Their structural arrangements
can include the ions of different size and charge, which tend
to be extremely adaptable in composition [53]. Consequently,
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energy bands of perovskites are highly abnormal and their
composition is special in terms of characteristics [54]. Since
of the truth that most of the elements within the Periodic Table
can be well built within the perovskite structure [55]. They are
interesting nanomaterials in catalysis [56-60], fuel cells [61-66],
electrochemical sensing [67-71], energy power gadget and
many applications [72-74]. The catalysis of these perovskite-
type oxide is greater than that of numerous transition metals
compounds and indeed a few valuable metal oxides [75]. Nano-
perovskites are well known for detecting amino acids, acetone,
glucose, H2O2, alcohols, gases and neurotransmitters [76-78].

Perovksite based nanostructured materials are supposed
to be promising, fascinating electrode materials for designing
supercapacitors with high energy storage performance [79].
In this review article, the recent progress and advances in
designing perovskite based nanostructured supercapacitor
electrode materials is discussed, which may provide as a guide-
lines for the next generation of supercapacitor electrode design.

Perovksite materials: Geologist, Gustav Rose discovered
the calcium titanium oxide mineral within the Urals in 1839
and it had been called perovskite in honor of Count Lev Alexevich
von Perovski, a prominent Russian mineralogist. Goldschmidt
first depicted the eminent crystal structure of perovskite in
1926 [80-83]. The general chemical formula for perovskite
compounds is ABX3, where ‘A’ and ‘B’ are two cations, regularly
of exceptionally different sizes and X is the anion normally
oxides or halogens that bind to both cations. The ‘A’ atoms are
usually bigger than the ‘B’ particles where the B particle is
encompassed by an octahedron of X particles. There are different
forms of perovskites in the earth’s crust and the most inexha-
ustible ones are MgSiO3 and FeSiO3 [76,80,847].

Crystallography: The perovskite structures can be obtained
from numerous oxides with the chemical formula ABO3. In
chemical formula ABO3, A ion is an alkali earth metals or
lanthanides with larger radius, B is a transition metal ion with
small radius and O is the oxygen ion with the ratio of 1:1:3
[85]. Ion (A) is found at the body center, while ion (B) is found
at the cube corner position and oxygen atoms are found at face-
centered positions in the ABO3 cubic unit cell of perovskite
[50]. The six-fold coordination of B cation (octahedron) and
the 12-fold coordination of the A cation come from the stabili-
zation of the perovskite structure [81,84,85].

To test the reasonableness of the combination of cations
for the perovskite structure, the tolerance factor can be mea-
sured. Many researchers [86-90] exclusively indicated that it is
possible to determine the perovskite structure on the basis of
tolerance factor values. For 1.00 < t < 1.13, 0.9 < t < 1.0, and
0.75 < t <0.9, the perovskite structure is hexagonal, cubic and
ortho-rhombic, respectively. A few distortions may be found
in the perfect cubic frame of perovskite brought about in ortho-
rhombic, rhombohedral, hexagonal and tetragonal shapes (Fig.
1) [91]. This distortion results from the smaller particle A,
which allows the BX6 octahedra to be tilted in arrange to maximize
A-X bonding. The perovskite formula must have impartial
balanced charge, such that the product of the addition of the
charges of A and B particles should be proportionate to the total
oxygen particle charge [92-96]. A sufficient charge dispersion
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Fig. 1. Different distorted perovskite unit cells; (a) perfect lattice, (b) tetra-

gonal, (c) orthorhombic, (d) hexagonal, (e) rhombohedral [91]

ought to be achieved in the forms of A2+B4+X3
2− or 2:4 perovskites;

A3+B3+X3
2− or 3:3 perovskites; and A+B5+X3

2− or 1:5 perovskites
[97-100]. Using pulsed laser deposition, molecular beam epitaxy
and other methods, perovskite can be used as an epitaxial film
on top of other perovskites [101-105]. It can be organized in
layers, and the ABO3 structure can be isolated by thin interlayer
materials [86,97,101].

Properties: Perovskite materials display numerous prop-
erties because of its unique chemical properties such as their
non-stoichiometry of their anions and/or cations, the valence
mixture electronic structure, the distortion of the cation arrange-
ment, and the mixed valence [106-111]. Dielectric properties
are very properties of perovskites [112-115]. Usually, layers
of these substances are introduced into capacitors to advance
their execution [101]. Since it exhibits incredible resistance to
current channels under the action of applied current and voltage
and is strongly separated from conductive materials in basic
electrical properties [116-120]. The disclosure of ferroelec-
tricity in perovskite-based materials and other barium titanate
(BaTiO3) [121] has been made available for a variety of
purposes, such as ultrasonic imaging systems, infrared cameras,
fire sensors, vibration sensors, etc. [122-124]. Due to the
presence of superconductivity, the oxide perovskite structure
form gives a great auxiliary device. High electronic
conductivity is shown by perovskites, so they are used as
cathodes in solid oxide fuel cells that display prevalent hole
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conductivity [125]. Fabulous catalytic activity and high
chemical stability have appeared; it subsequently incorporates
into the catalysis of altered reactions [126]. In addition, it can
be characterized as an oxidation or oxygen-activated catalyst
and as a model of dynamic sites [127,128].

Perovskite based electrode materials for designing
supercapacitors: Perovskite-based nanostructures have been
widely considered because of their great physical and chemical
properties, including supermagnetic [50], electronic conduc-
tivity [129], ionic conductivity [130], electrically active structure
[131], photocatalytic [132], thermoelectric and dielectric prop-
erties, etc. [133], Hence, perovksite based nanostructured
materials are supposed to be promising, fascinating electrode
materials for designing supercapacitors with high energy
storage performance. Herein, we reviewed perovskite based
electrode materials for supercapacitors in different ways. One
is based on type of perovskite and the other is based on method
of perovskite synthesis.

Types of pervoskite based electrode materials: Perovskite
can be broadly classified into two, oxide perovskite and halide
perovskite. Perovskite oxides with formula ABO3 or A2BO4

are a significant class of useful materials that demonstrate the
degree of stoichiometry and crystal structures [134,135]. Normal
structures (ABO3) comprise of large 12-coordinated A-site
cations and small 6-coordinated B-site cations [84,85]. The
common chemical formula for halide perovskite comp-ounds
is ABX3, where ‘A’ and ‘B’ are two cations, frequently of
exceptionally different sizes, and X is halogen bonding to both
cations [136,137]. Halide perovskites is identified as one of
the most fascinating electrode materials for supercapacitors.

Oxide perovskite: Perovskite oxide has attracted wide-
spread consideration as capacitor terminal materials due to its
special physical and electronic properties. A novel La0.7Sr0.3

CoO3-δ (LSC)@MnO2 core-shell nanorod was synthesized by
He et al. [138]. Grid-like MnO2 nanosheets are developed on
LSC to create a one of a kind core/shell nanostructure, may
successfully progress the electrochemical execution of MnO2.
These MnO2 nanosheets shell essentially increment the effec-
tive area over which the reaction will take place and decrease
the transmission distance of ions/electrons, which is helpful
in moving particles and electrons, improving the kinetics of
electrochemical reactions. This core/shell nanorods illustrated
great electrochemical execution with high capacitance, 570 F

g-1 at 1 A g-1 and great cycle stability, capacitance maintenance
remains at 97.2% after 5000 cycles. Mo et al. [139] developed
Ca-doped perovskite lanthanum manganites (La1-xCaxMnO3,
LCMs), appeared great energy storage properties. Samples
doped with 50% calcium appeared prevalent specific capaci-
tances of 170 F g-1, at current thickness of 1 A g-1 in 1M KOH
aqueous solution. The oxygen vacancies in the perovskite are
considered to be the charge storage region of the pseudo capaci-
tance. Charge storage of oxygen intercalation progressed by
doping with components of low valence in perovskite manga-
nites. Energy densities of perovskite supercapacitors will subse-
quently be maximized by expanding the vacancies of oxygen.

Bavio et al. [140] investigated the potential energy ability
in supercapacitors containing oxide La2B(II)MnO6 (with B =
Cu, Co, Ni) as the electrode material. The double perovskites
of the La2B(II)MnO6 system can be utilized in supercapacitors
as electrode material giving specific capacitance values of 700
F g-1 when B is Cu in alkaline solution. The higher capacitance
values were gained for La2CuMnO6 and its specific capacitance
of 781.25 F g-1 at a current density of 3.12 A g-1 and power
density 72.6 kW kg-1. Ho & Wang [141] developed a novel
hydrazine reduction method to convert perovskite oxides into
active materials with the required electrical conductivity and
electrochemical behavior in order to advance the electrical
conductivity and general action of active materials in pseudo-
capacitors. They reported one step hydrazine reduction process,
which can partially convert part of the LaNiO3 (LNO) into nickel
oxide/hydroxide on the surface while maintaining the porous
interconnected electrical conductivity structure (Fig. 2). Various
hydrazine reduction durations are added to LaNiO3 (LNO),
leading to a significant increment in specific capacitance of
280 F g-1 at 1 A g-1. The required electrical conductivity of LNO
has been retained, as appeared by the overall resistance of less
than 0.3Ω within the aqueous electrolyte. The hydrazined LNO
illustrated the specified stability as electrode, where the perme-
able structure offers good electrolyte openness, which supports
the improvement of general electrochemical behaviours. A
simple hydrothermal synthetic method has been developed for
the preparation of perovskite lanthanum aluminate (LaAlO3)
and reduced graphene oxide composite (rGO). The rGO/LaAlO3

composite material has exhibited improved specific capaci-
tance (721 F g-1 at a filter rate of 2 mV s-1). The composite
appeared energy density of 57 Wh kg-1 with power density of

LaNiO  (LNO) structure3
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Hydrazine
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95 °C, 
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95 °C, 
3 h

Formation of nanorod, nanoflake
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More nanostructures formed
on the surface while LNO

backbone was shrunk

Fig. 2. Transformation of the LNO scaffold after the hydrazine reduction at 95 °C for different time span [141]
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569 W kg-1 [142]. Perovskite oxides are profoundly excellent
electrodes for oxygen-ion-intercalation-type supercapacitors
due to their high oxygen vacancy concentration and tap density.
Xu et al. [143] synthesized B-site cation-ordered Ba2Bi0.1Sc0.2

Co1.7O6-δ as an electrode material with high oxygen vacancy
concentration and oxygen dissemination rate. It appeared
specific capacitance of 780 F g-1, energy density of 70 Wh kg-1

at the power density of 787 W kg-1 with an aqueous alkaline
arrangement, 6 M KOH electrolyte.

Halide perovskite: The purpose of establishing self charge-
able supercapacitors in electric vehicles is to reduce the emission
of undesirable gases, which can be achieved by adding perovskite
solar cells to self-charge the supercapacitors. CsPb Br2.9I0.1

perovskite-sensitized solar cell is coordinated for the first time
with an asymmetrical supercapacitor for a photo supercapacitor
applications. The use of an inorganic cesium-based perovskite
material and the useful impact of consolidating a miniature
sum of iodide into the bromide system progressed the film’s
compactness and essentially progressed the steadiness of a
solar cell. The asymmetrical supercapacitor shows a great
specific capacitance of 150 mF cm-2, which appears its potential
for the photo-supercapacitor applications [144]. Slonopas et al.
[145] illustrated the effective applications of a CH3NH3PbI3

perovskite material as a dielectric capacitor with execution
proportionate to asymmetric supercapacitors. A high specific
capacitance of 523 mF cm-2 was reported at 350 K and stable
capacitance of 432 mF cm-2 was kept up at room temperature.
So, perovskite materials are reasonable for using as energy
storage gadgets in applications requesting great extending
thermal and electrical characteristics.

Organometallic halide perovskites display curiously ionic
responses apart from its exceptional electronic property. These
properties are utilized in manufacturing the electrochemical
capacitors. Oloore et al. [146] developed cadmium sulfide
quantum dots, organohalides perovskite-based bilayer electrodes
and a perfect CdS electrodes for supercapacitors. The specific
capacitance of the electrodes is improved by coating layers of
methyl ammonium lead iodide and methyl ammonium bismuth
iodide on the CdS quantum dots. Perovskite materials contri-
bute additional charges and progress ionic conductivity with
its crystals which leads to the progressed performance. More-
over, organometallic halide perovskites can give more dynamic
sites for the electrochemical responses, shortening the path-
ways for transport of the charges or particles. Electrodes showed
highest areal capacitance of 141 µF cm-2 and highest energy
density of 23.8 nWh cm-2. Maji et al. [147] created a symmetric
supercapacitor with CsPbI3 as electrode material to illustrate

the charge storing capability. CsPbI3 was synthesized by experi-
mentally hazard-free chemical synthesis way, which is steady
in orthorhombic stage. The device appeared great electro-
chemical properties with specific capacitance 7.23 mF cm-2 at
a scan rate 2mV s-1 and 65.5% cyclic stabilities after 1000 cycles.
In other work, supercapacitors were successfully constructed
by utilizing composite materials of metal halide hybrid
perovskites (MBI and MPI) and nickel oxide nanoparticles.
In order to make a complete supercapacitor device, a thin layer
of electrolyte is coated on the electrodes, and two identical
electrodes are fixed together by two adhesive clips (Fig. 3). It
was found that in expansion to the improved capacitive contri-
bution, the sum of charge stored from proton intercalation forms
with addition of perovskite materials too increased. Charge
stored at the surface of MBI@NiO and MPI@NiO from the
pseudocapacitance routes is a critical figure in accomplishing
high values for their energy densities. The specific capacitances
of 407 F g-1 and 368 F g-1, with comparing energy densities of
56.5 Wh kg-1 and 51.1 Wh kg-1 have been observed for MBI@
NiO and MPI@ NiO composite electrodes, separately, at 10
mV s-1 [148]. Andricevic et al. [149] created a shinning, light-
emitting electrochemical cell with CH3NH3PbBr3 single crystals
directly developed on vertically adjusted carbon nanotube as
contact terminals. The diminished interface energy barrier and
the strong charge infusion due to the carbon nanotube tip up-
graded electric field. The green light emitted at room tempera-
ture is as high as 1800 cd m-2. A summary of perovskite based
electrode materials  (based on oxides and halides) in superca-
pacitors are given in Table-1.

Effect of synthetic methodology in choosing electrode
materials: Perovskite is usually synthesized by solid-phase
ceramic reaction. The solid-phase reaction has many disadvan-
tages, such as product homogeneity, defects related to lumine-
scence, and chemical pollution introduced during repeated
tapping and heating operations [150,151]. In order to progress
synthesis strategies and avoid these drawbacks, a few modern
strategies have been suggested, such as hydrothermal synthesis,
precipitation method, sol-gel method, wet chemical method,
etc.

Hydrothermal synthesis: The hydrothermal synthesis is
carried out the reaction in the aqueous solution and suspense
the precursors at high temperature, pressure, without calcina-
tions to obtain crystalline powder [152,153]. NiMnO3 perovskite
oxide with a high particular surface area and electrochemical
properties was produced by means of hydrothermal synthesis
at low temperature. The shape and composition were directed
by controlling temperature and time of the hydrothermal synth-

MPI@NiO Electrolyte
coating MPI@NiO

MPI@NiO

Electrolyte

Fig. 3. Schematic representation of fabrication of supercapacitor based on MBI@NiO&MPI@NiO nanocomposites [148]
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esis reaction. To change the specific surface range and morpho-
logy, the synthesis of perovskite oxide was regulated by the
reaction time. It appeared a high specific capacitance of 99.03
F g-1 and fabulous cycle stability with a coulombic efficiency
of 77% indeed after 7000 cycles. Thus, synthesized perovskite
can be utilized as an dynamic electrode for supercapacitors
[154]. Hydrothermally synthesized LaFeO3 perovskite (LF)
is co-doped with Mn and Nd to form La0.8Nd0.2Fe0.8Mn0.2O3

(LNFM), which have higher specific capacitance of 158 F g-1

at 50 mV/s compared to non-doped and single doped LF
samples. The coexistence of ferrite powders and graphene oxide
(NGO) doped with LNFM/nitrogen improves nanocomposite
specific capacitance by more than 7 times. It has been found
that the emergence of NGO greatly increases the specific capa-
citance of nanocomposites to 1060 F g-1 at 50 mV s-1. After
10000 non-stop cycles, composite showed exceptional capacity
retention as 92.4% [155].

Singh et al. [156] effectively prepared La2ZnMnO6 nano-
fakes through simple hydrothermal method. Electron diffra-
ction pattern of the compound represents the arrangement of
diffraction rings relative to the orthogonal structure. At normal
hole distance 12 nm, the measured specifc surface area is 46
m2 g-1 and specific capacitance is 718.6 F g-1 at a scan rate of
1 mV s-1. The nanofake electrode exhibited retention of ~86%
specific capacitance after 1000 cycles at a steady current density
of 2.5 A g-1. Nagamuthu et al. [157] have developed CeO2

mixed LaMnO3 nanocomposites, which showed mesopore size
and high surface region within the N2 adsorption/desorption
measurements. Three terminal measurements indicate that the
CeO2 mixed LaMnO3 nanocomposites is an appropriate negative
electrode fabric for supercapacitor. The specific capacitance
and energy density of asymmetric supercapacitor are found to
be 262 F g-1 at a constant current of 1 A g-1 and 17.2 Wh kg-1 at
a power density of 1015 w kg-1, respectively. A new type of
perovskite oxide BaxMn1-xO3 electrode for supercapacitors was
fabricated via the hydrothermal synthesis with changing concen-
tration of Ba. The surface region of the nanorods has been
extended to increase the concentration of dopant, which constantly

increases the electrochemical characteristics. It exhibited high
specific capacitance of 433 F g-1 and high retention capacitance
as 104% after 1000 cycles. In addition, prepared BaMnO3 has
good conductivity with charge exchange resistance and success-
ful series resistance of 2.9 and 4 Ω [158].

Precipitation method: The precipitation of metal salts
may be a strategy, usually used to synthesize perovskites [159].
Precipitation arises after the chemical reagent is used, which
diminish the solubility limit [160]. Harikrishnan & Bose [161]
synthesized LaNiO3 through co-precipitation strategy and the
samples were strengthened at distinctive temperatures. The
X-ray diffraction results show the crystallinity and rhombo-
hedral stage and the morphological characteristics of the sample
exhibits non-homogenous nature and twisted spherical structure.
The high capacitance values of the electrode are measured to
be 206.37 F g-1 at scan rates of 2 mV s-1 and 212.86 F g-1 at
current density of 2 A g-1, respectively in 3M KOH electrolyte,
which resulted in lower aggregration, higher particle diffusion
and greater electrical conductivity. This opens an entry way
for manufacturing electrodes for high-performance energy
storage gadgets. In other work, a basic chemical precipitation
strategy was utilized to synthesize pure-phase KCoF3 having
a size of 1-5 µm, which is used in supercapacitors. Due to the
oxidation-reduction reaction of Co particles, supercapacitors
based on KCoF3 exhibits great energy storage capacity. The
electrode showed long cycle life with 96% retention after 1000
cycles at a current density of 5.0 A g-1 and specific capacitance
of 286 F g-1 at 0.5 A g-1 in 6.0 M KOH electrolyte [162]. Cheng
et al. [163] built a clustered countercurrent-flow micro-channel
reactor for the synthesis of KMnF3 perovskite fluoride by a
co-precipitation method. The morphologies and electrochemical
characterstics of the synthesized KMnF3 particles have been
changed accordingly with the micromixing efficiencies of
clustered micro-channel countercurrent-flow reactor, which
can be balanced by the configuration and working conditions
of the reactor. Here, KMnF3 acts as positive electrode, activated
carbon as negative electrode and also 2 M KOH and non-woven
slice are used as electrolyte and separator, respectively (Fig. 4).

TABLE-1 
PEROVSKITE BASED ELECTRODE MATERIALS IN SUPERCAPACITORS (BASED ON TYPES) 

Electrode materials Electrolyte Specific 
capacitance Power density Energy density Retention capability Ref. 

(i) Oxide perovskite based materials 

La0.7Sr0.3CoO3-δ@MnO2 6 M KOH 570 F g–1 7489.3 W kg–1 37.6 Wh Kg–1 97.2% after 5000 cycles [138] 
La1-xCaxMnO3 1 M KOH 170 F g–1 – – 7.7 % after 2000 cycles [139] 
La2B(II)MnO6 0.5 M KOH 781.25 F g–1 72.6 kW kg–1 113.4 Wh kg–1 – [140] 
LaNiO3 1 M KOH 280 F g–1 – – – [141] 
rGO/LaAlO3 1 M Na2SO4 721 F g–1 569 W kg–1 57 Wh kg–1 85% after 3000cycles [142] 
Ba2Bi0.1Sc0.2Co1.7O6–δ 

6 M KOH 1050F g–1 787 W kg–1 70 Wh kg–1 92% after 2000 cycles [143] 

(ii) Halide perovskite based materials 
CsPbBr2.9I0.1 – 150 mF cm–2 – – – [144] 
CH3NH3PbI3 – 523 mF cm–2 – 57 Wh Kg–1 – [145] 
CdS-MAPI3 – 141 µF cm–2 12.7 mW cm–2 23.8 nWh cm–2 87 % after 4000 cycles [146] 
CsPbI3 – 7.23mF cm–2 – – 65.5% after 1000 cycles [147] 
MBI@NiO&MPI@NiO – 407 F g–1 & 368 F 

g–1 
– 56.5 Wh Kg–1& 

51.1 Wh Kg–1 
90% after 3000 CV 

cycles. 
[148] 

CH3NH3PbBr3 – 507 F g–1 764 W kg–1 –  [149] 

 

[138]
[139]
[140]
[141]
[142]
[143]

[144]
[145]
[146]
[147]
[148]

[149]
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An asymmetric supercapacitor gathered with the KMnF3 and
activated carbon displayed an energy density of 13.1 W h kg-1

at a power density of 386.3 W kg-1, specific capacitance of
~442 F g-1 at a current density of 1 A g-1, with prominent capaci-
tance retention of ~81.2% after 5000 cycles.

Ni form

Activated carbon

Separator/2 M KOH

KMnF3

Ni form

–

+

Load

Fig. 4. Schematic of the assembled asymmetric supercapacitor based on
KMnF3 perovskite [163]

A high execution supercapacitor was manufactured using
LaCoO3 electrode synthesized by co-precipitation strategy. The
XRD result confirmed the crystalline nature of the rhom-
bohedral LaCoO3 phase and morphological studies exhibit
distorted polyhedron shape. The specific capacitance of LaCoO3

electrode showed 532.55 F g-1 at scan rate 10 mV s-1 and 299.64
F g-1 at current density 10 A g-1 reveals a greater particle diffu-
sion and exceptional electronic conductivity [164].

Lannelongue et al. [165] reported two asymmetric aqueous
electrochemical capacitors, C/Ba0.5Sr0.5-Co0.8Fe0.2O3-δ (BSCF)
and FeWO4/BSCF with activated carbon, synthesized by a
precipitation strategy. These two devices were worked between
and 1.6 V and between and 1.4 V, individually. At low current
density, the volume energy density of the device is as high as
2.7 Wh L-1. Both gadgets displayed long cycle life with capaci-
tance retention of 88% over 10,000 cycles for the C/BSCF
gadget and 83% over 45,000 cycles for the FeWO4/BSCF device.
In other work, the CeNiO3 material was prepared through co-
precipitation strategy as a pseudocapacitor electrode. The
electrode shows greatest specific capacitance of 510 F g-1 at a
current density of 1 A g-1. The electrode keeps up 79% rate
capability indeed at current density of 25 F g-1 additionally
features a cyclic stability of 97% maintenance after 5000 cycles
at current thickness of 15 A g-1. The CeNiO3 appeared to be an
excellent electrode material for supercapacitor applications
[166].

Sol-gel method: The sol-gel strategies are well set in the
preparation of complex oxides because they can obtain pure
phase products and precisely control their stoichiometry [167].
This quality makes them a device of choice for the synthesis
of perovskite-type oxides. Elsiddig et al. [168] designed and
synthesized non-stoichiometric LaMn1±xO3 perovskite materials

by a simple sol-gel strategy and applied as supercapacitor
electrodes. This mesoporous morphology encourages quick
particle diffusion and electron exchange at the electrode/
electrolyte interface. LaMn1.1O3 sample exhibited much higher
particular capacity 202.1 mAh g-1/727.6 C g-1 at 1 A g-1. Sharma
et al. [169] also developed a Mo-doped strontium cobaltite
(SrCo0.9Mo0.1O3-δ, SCM) and prepared as an oxygen anion-
intercalated type charge storage material through sol-gel
strategy. Here O2− diffusion as the rate constraining factor for
charge capacity. Electrode exhibited great energy and power
density, 74.8 Wh kg-1, 6600 W kg-1 as well exceptional cycling
life, holding 97.6% initial specific capacitance after 10,000
cycles at 10 A g-1. In other work, high-crystalline SrMnO3

perovskite oxide nanofibers have been successfully constructed
by George et al. [170]. It was developed by sol-gel electro-
spinning, using poly(vinyl pyrrolidone) as a sacrificial poly-
meric binder. Doping 20 mol% Ba to SrMnO3 lattice completely
increases the specific capacitance from 321.7 F g-1 to up to
446.8 F g-1. It can be considered that the increase in specific
capacitance caused by doping is an increase in oxygen vacancies
caused by lattice distortion. The nanofibers showed energy
density of 37.3 W h kg-1 at a power density of 400 W kg-1.The
nanofibers held 87% its initial capacitance after 5000 succe-
ssive cycles and recognize them as a excellent candidate for
supercapacitors.

Tomar et al. [171] demonstrated the extraordinary charge
capacity characteristics of strontium titanate with cubic structure
utilizing sol-gel synthesis and investigated in both aqueous
and solid state supercapacitor as charge storage material. Cubic
structure of perovskite is valuable for supercapacitors because
of its three-dimensional diffusion channels for oxygen anion
diffusion. Strontium titanate electrode showed high capacitance
of 592 F g-1 due to its longer particular surface range and excep-
tional mass exchange rate of electrolytic particles. The symme-
tric cell in aqueous media showed greatest energy and power
density 27.8 Wh kg-1 and 1921 W kg-1 with great cycle stability,
99% capacitance maintenance after 5000 GCD cycles. An
extraordinary working electrode developed utilizing meso-
porous cobalt titanate (CTO) microrods through the sol-gel
route. The mesoporous CTO microrods with expanded textural
boundaries played a crucial role within the diffusion of particles
and contributed specific capacitance of 608.4 F g-1, specific
power of 4835.7 W kg-1 and a specific energy of 9.77 Wh kg-1

in an aqueous 2 M KOH electrolyte. The mesoporous CTO
appears its potential as an electrode for a long-cycle super-
capacitor and gives openings for extra improvement after
creating the core-shell hetero-architecture with other metal
oxide materials such as MnO2 and TiO2 [172]. Kitchamsetti et al.
[173] synthesized mesoporous nickel titanite (NTO) rods inclu-
ding progressively interlocked nanoparticles as an amazing
electrode for the applications of supercapacitor. It appeared
specific capacitance of 542.26 F g-1, the energy density of 8.06
Wh kg-1 and a power density of 4320 W kg-1, which is essentially
superior than Ni, Mn, Fe, Cr and Ti-based perovskites. The
diffusion-controlled mechanism is faster and upgraded get to
the OH− particles profound interior the rod body, showed long
life cycle, high stability up to 2100 cycles.
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Wet chemical method: Wet chemical method is an effective
precise synthetic technique for synthesizing the redox state of
double-perovskite compound [76]. These methods including
the sol-gel synthesis, co-precipitation of metal particles utilizing
distinctive precipitating agents and warm treatment [174]. Wet
chemical strategies were categorized built on the strategies
utilized for solvent removal [175]. New oxygen-deficient double
perovskites, Ba2FeCoO6-δ, was synthesized using simple wet
chemical synthesis. The specific capacitance of Ba2FeCoO6-δ is
820.0 F g-1 at a current density of 3 A g-1. The electrode gives
values of energy and power densities as 23.06 Wh kg-1 and
677.92 W kg-1, exhibiting potential of Ba2FeCoO6-δ electrode
for supercapacitive applications [176]. Mansoorie et al. [177]
reported a simple chemical synthesis of novel double pero-
vskite Y2CuMnO6 nanocrystallites by a wet chemical sol gel
method. X-ray photoelectron spectra showed the nearness of
Y3+, Cu2+ and Mn4+ species at the surface of the Y2CuMnO6.
The specific capacitance ~15.6 F g-1, energy density ~0.43 W
h kg-1 and power density ~56.2 W kg-1 have been observed at
the current thickness of 0.2 A g-1. The Y2CuMnO6 nano-
crystallites anode appeared specific capacitance maintenance
of ~75% for 1000 cycles. The novel double perovskite Y2CoNiO6

was successfully synthesized by ethylene glycol and citric acid
stabilized effortless wet sol-gel chemical method. In the sample
with second-order phase transition, an over-whelming para-
magnetic behaviour was obtained. The effective charge capacity
was due to redox response of Co2+/ Co3+ and Co3+/Co4+ as promoted
by X-ray photoelectron spectroscopy. Power and energy densities

of Y2CoNiO6 were 19.97 W h kg-1 and 1324 W kg-1, respectively
[178].

Kumar et al. [179] were effectively developed double
perovskite Gd2NiMnO6 through simple wet chemical process.
The X-ray photoelectron spectroscopy studies displayed the
nearness of Gd3+, Ni2+/Ni3+, Mn2+/Mn3+/Mn4+ particles on the
surface of Gd2NiMnO6. It has appeared specific capacitance
of 400.46 F g-1 at the current density of 1 A g-1. Energy density
of 20.23 Wh kg-1 and power density of 421.75 W kg-1 have
been obtained, which appear potential of electrode fabric for
the energy storage gadgets. Singh et al. [180] synthesized new
synthesis route accompanying improvement of new anode
fabric with potential of application in next generation energy
storage gadgets. Double perovskite La2FeCoO6 nano-crysta-
llites prepared through wet chemical sol-gel method. The nano-
crystallites electrode displayed specific capacitance of 831.1
F g-1 at current thickness of 1 A g-1. In addition, La2FeCoO6

nanocrystallites have appeared energy density ~23.3 Wh kg-1

and power density ~224.9 W kg-1 at current thickness of 1 A g-1.
In other work, a hybrid WO3-ZnS nanocomposite was
prepared by microwave-assisted wet chemistry strategy, and
the composite was used to improve the capacitance execution
of WO3 via compositing. SEM and HRTEM studies showed
that as-prepared nanocomposites comprised of irregular
particles of moderate size. The hybrid state of the orthorhombic
and cubic structure of WO3 and cubic structure of ZnS was
distinguished, and its molecular size was getting diminished
by stacking ZnS into WO3. Charge-discharge analysis appeared

TABLE-2 
PEROVSKITE ELECTRODE MATERIALS IN SUPERCAPACITORS (BASED ON SYNTHESIS) 

Electrode materials Electrolyte Specific 
capacitance Power density Energy density Retention capability Ref. 

(i) Hydrothermal synthesis       
NiMnO3  6 M KOH 99.03 F g–1 – – 77% after 7000 cycles [154] 
La0.8Nd0.2Fe0.8Mn0.2O3/NGO 3 M KOH 1060 F g–1 – – 92.4% after 10000 cycle [155] 
La2ZnMnO6  2 M KOH 718.6 F g–1 – – 86%after 10000 cycle [156] 
LaMnO3/CeO2 1 M Na2SO4 262 F g–1 1015 w kg–1 17.2 W h kg–1 92% after 20000 cycle [157] 
BaxMn1–xO3 1 M KOH 433 F g–1 – – 104% after 1000 cycles [158] 
(ii) Precipitation method   – –   
LaNiO3 3 M KOH 212.86 F g–1 – –  [161] 
KCoF3 6 M KOH 286 F g–1 – – 96%after 10000 cycle [162] 
KMnF3 2 M KOH 442 F g–1 386.3 W kg–1 13.1 Wh kg–1 81.2% after 5000 cycles [163] 
LaCoO3 3 M KOH 532.55 F g–1 – – – [164] 
C/Ba0.5Sr0.5-Co0.8Fe0.2O3-d 5 M LiNO3 46 C g–1 – 2.7 Wh L–1 83% after 45,000 cycles [165] 
CeNiO3 3 M KOH 510 F g–1   97% after 5000 cycles [166] 
(iii) Sol-gel method       
LaMn1±xO3 1 M KOH 202 mAhg–1 – – 73% after 1000 cycles [168] 
SrCo0.9Mo0.1O3-δ 6 M KOH 1223 F g–1 6600 W kg–1 74.8 Wh kg–1 97.6 % after 10,000 cycles [169] 
SrMnO3 0.5 M Na2SO4 321.7 F g–1 400 W kg–1 37.3 Wh kg–1 87% after 5000 cycles [170] 
SrTiO3 3 M KOH 592 F g–1 1921 W kg–1 27.8 Wh kg–1 71.6% after 3000 cycles [171] 
CoTiO3 2 M KOH 608.4 F g–1 4835.7 W kg–1 9.77 Wh kg–1 82.3% after 1950 cycles [172] 
NiTiO3  2 M KOH 542.26 F g–1 4320 W kg–1 8.06 Wh Kg–1 91% after 2100 cycles [173] 
(iv) Wet chemical method       
Ba2FeCoO6-δ 2 M KOH 820.0 F g–1 677.9 W kg–1 23.06 Wh kg–1  [176] 
Y2CuMnO6 1 M KOH 15.6 F g –1 56.2 W kg–1 0.43 W h kg–1 75% after 1000 cycles [177] 
Y2CoNiO6 – – 1324 W kg–1 19.97 W h kg–1 98.5% after 1200 cycles [178] 
Gd2NiMnO6 4 M KOH 400.46 F g–1 421.75 W kg–1 20.23 Wh kg–1 – [179] 
La2FeCoO6 1 M KOH 831.1 F g–1 224.9 W kg–1 23.3 Wh Kg–1 88% after 1000 cycles [180] 
WO3-ZnS 20% KOH 215 F g –1 – – 71% after 4000 cycles [181] 

 

[154]
[155]
[156]
[157]
[158]

[161]
[162]
[163]
[164]
[165]
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[168]
[169]
[170]
[171]
[172]
[173]

[176]
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[179]
[180]
[181]
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the greatest capacitance of WO3 was improved from 44 F g-1

to 215 F g-1 by the stacking of ZnS with WO3 in KOH electrolyte.
It appears to be an excellent material for the manufacture of
supercapacitor gadgets [181]. A summary of perovskite based
electrode materials  (based on synthetic routes) in supercapa-
citors are given in Table-2.

Conclusion

Perovksite based nanostructured materials are supposed
to be promising, fascinating electrode materials for designing
supercapacitors with high energy storage performance. These
materials have received broad consideration due to their excellent
physical and chemical characteristics such as electronic cond-
uctivity, ionic conductivity, electrically active structure, super-
magnetic, photocatalytic, thermoelectric, dielectric properties,
etc. So they are interesting nanomaterials for wide applications
in catalysis, fuel cells, electrochemical sensing and energy
capacity gadget. The migration of ions through lattices enables
perovskite nanostructures to be used as electrodes for super-
capacitors. Perovskite oxide are further investigated for such
applications due to their excellent energy and power density,
high specific capacitance and long cycle life. Very recently
the perovskite metal halides have drawn broad consideration
in energy conversion and storage technology. Because it can
be used as both electrolyte and electrode material in halide
perovskite based supercapacitors. Thus, this article reviewed
the recent progress and advances in designing perovskite based
nanostructured electrode materials, which provide as a guide-
lines for the next generation of supercapacitor electrode design.
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