Copyright (c) 2025 T. Nesavi, L. Balu, R. EzhilPavai, M. Ajithkumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Comprehensive Characterisation of Pure SnO2 Nanoparticles: Insights into Photocatalytic Activity and Electrochemical Performance
Corresponding Author(s) : L. Balu
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
Tin oxide nanoparticles (SnO2 NPs) were synthesized via a straightforward hydrothermal approach and subsequently annealed at temperatures of 500 ºC, 600 ºC and 700 ºC. Comprehensive characterisation of these nanoparticles was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDS), high-resolution transmission electron microscopy with selected area electron diffraction (HRTEM-SAED), UV-visible diffuse reflectance spectroscopy (UV-DRS) and X-ray photoelectron spectroscopy (XPS). XRD patterns revealed a tetragonal crystal structure, with the average crystallite size increasing from 8 nm to 28 nm as the annealing temperature was raised, a finding that was corroborated by TEM analysis. FTIR spectroscopy confirmed the presence of Sn–O–Sn bonds, indicated by absorption peaks at 644 cm–1. FESEM analysis showed a predominantly spherical morphology and EDX spectra verified the presence of tin and oxygen. The optical band gap of Sn7 NPs was determined to be 3.43 eV through UV-DRS using the Kubelka–Munk method. XPS analysis provided insights into the electronic structure and confirmed the phase purity and elemental composition of the samples. The SnO2 (Sn7) electrode delivered a specific capacitance of 271 F g–1 at a current density of 0.2 A g–1 and exhibited remarkable cyclic stability, retaining 86.14% of their capacitance after 2000 cycles. Furthermore, the photocatalytic activity of Sn7 catalyst was assessed under sunlight, revealing a notable 85% degradation of methyl violet dye. These findings highlight the dual functionality of nanosized SnO2, making it a promising material for both energy storage and environmental applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Malik, V.K. Tomer, S. Duhan, S.P. Nehra and P.S. Rana, Energy and Environment Focus, 4, 340 (2015); https://doi.org/10.1166/eef.2015.1182.
- X. Meng, M. Zhou, X. Li, J. Yao, F. Liu, H. He, P. Xiao and Y. Zhang, Electrochim. Acta, 109, 20 (2013); https://doi.org/10.1016/j.electacta.2013.07.052
- S. Ragupathy and T. Sathya, J. Mater. Sci. Mater. Electron., 29, 8710 (2018); https://doi.org/10.1007/s10854-018-8886-6
- K. Dhinakar, T. Selvalakshmi, S.M. Sundar and A. Chandra Bose, J. Mater. Sci. Mater. Electron., 27, 5818 (2016); https://doi.org/10.1007/s10854-016-4497-2
- S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Mater. Sci. Mater. Electron., 30, 13174 (2019); https://doi.org/10.1007/s10854-019-01681-7
- S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, G.U. Sankar, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Energy Storage, 31, 101530 (2020); https://doi.org/10.1016/j.est.2020.101530
- J.-Z. Su, X.-F. Wu, Y.-N. Cui, H. Wang, L.-J. Song, J.-L. Shang, Y.-M. Shi, Z.-D. Wang, C.-Y. Zhang and Y.-Q. Zuo, J. Mater. Sci. Mater. Electron., 31, 1585 (2020); https://doi.org/10.1007/s10854-019-02675-1
- S.P. Lim, N.M. Huang and H.N. Lim, Ceram. Int., 39, 6647 (2013); https://doi.org/10.1016/j.ceramint.2013.01.102
- X. Wang, Y. Yang, P. He, F. Zhang, J. Tang, Z. Guo and R. Que, J. Mater. Sci. Mater. Electron., 31, 1355 (2020); https://doi.org/10.1007/s10854-019-02649-3
- A. Murugan, V. Siva, A. Shameem, S.A. Bahadur, S. Sasikumar and N. Nallamuthu, J. Energy Storage, 28, 101194 (2020); https://doi.org/10.1016/j.est.2020.101194
- S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, Mater. Res. Express, 6, 0850i3 (2019); https://doi.org/10.1088/2053-1591/ab29c2.
- A.P. Periyasamy, Sustainability, 16, 495 (2024); https://doi.org/10.3390/su16020495
- Y. Li, R. Peng, X. Xiu, X. Zheng, X. Zhang and G. Zhai, Superlattices Microstruct., 50, 511 (2011); https://doi.org/10.1016/j.spmi.2011.08.013
- G.H. Patel, S.H. Chaki, R.M. Kannaujiya, Z.R. Parekh, A.B. Hirpara, A.J. Khimani and M.P. Deshpande, Physica B, 613, 412987 (2021); https://doi.org/10.1016/j.physb.2021.412987
- M. Wang, Y. Gao, L. Dai, C. Cao and X. Guo, J. Solid State Chem., 189, 49 (2012); https://doi.org/10.1016/j.jssc.2012.01.021
- V. Vinosel, S. Anand, M.A. Janifer, S. Pauline, S. Dhanavel, P. Praveena and A. Stephen, J. Mater. Sci. Mater. Electron., 30, 9663 (2019); https://doi.org/10.1007/s10854-019-01300-5
- Y. Wang, C. Ma, X. Sun and H. Li, Nanotechnology, 13, 565 (2002); https://doi.org/10.1088/0957-4484/13/5/304
- N.L. Myadam, D.Y. Nadargi, J.D. Nadargi and M.G. Chaskar, J. Sol-Gel Sci. Technol., 96, 56 (2020); https://doi.org/10.1007/s10971-020-05377-x
- J. Sheng, H. Tong, H. Xu and C. Tang, Catal. Surv. Asia, 20, 167 (2016); https://doi.org/10.1007/s10563-016-9217-7
- K. Prakash, P. Senthil Kumar, S. Pandiaraj, K. Saravanakumar and S. Karuthapandian, J. Exp. Nanosci., 11, 1138 (2016); https://doi.org/10.1080/17458080.2016.1188222
- G. Elango and S.M. Roopan, J. Photochem. Photobiol. B, 155, 34 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.010
- A. Ayeshamariam, V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. Perumalsamy and M. Jayachandran, J. Nanoelectron. Optoelectron., 8, 273 (2013); https://doi.org/10.1166/jno.2013.1471.
- A. Priyadharsini, M. Saravanakumar, J. Suryakanth, S. Pavithra, A. Sakunthala, S. Kavitha, V. Rukkumani and G. Ananthakumari, Bull. Mater. Sci., 46, 205 (2023); https://doi.org/10.1007/s12034-023-03039-6
- K.C. Suresh, S. Surendhiran, P. Manoj Kumar, E. Ranjth Kumar, Y.A.S. Khadar and A. Balamurugan, SN Appl. Sci., 2, 1735 (2020); https://doi.org/10.1007/s42452-020-03534-z
- S. Naz, I. Javid, S. Konwar, K. Surana, P.K. Singh, M. Sahni and B. Bhattacharya, SN Appl. Sci., 2, 975 (2020); https://doi.org/10.1007/s42452-020-2812-2
- A. Abdelkrim, S. Rahmane, O. Abdelouahab, A. Hafida and K. Nabila, Chin. Phys. B, 25, 046801 (2016); https://doi.org/10.1088/1674-1056/25/4/046801
- E. Ullah, M.Z.U. Shah, S.A. Ahmad, M. Arif, M.I. Khan, M. Hou, S. Guo, A. Shah and M. Sajjad, Mater. Today Commun., 37, 106889 (2023); https://doi.org/10.1016/j.mtcomm.2023.106889
- S.M. Yakout, J. Mater. Sci. Mater. Electron., 30, 17053 (2019); https://doi.org/10.1007/s10854-019-02052-y
- K. Rajwali and M.-H. Fang, Chin. Phys. B, 24, 127803 (2015); https://doi.org/10.1088/1674-1056/24/12/127803
- R. Rajan and R.E. Vizhi, J. Mater. Sci. Mater. Electron., 32, 12716 (2021); https://doi.org/10.1007/s10854-021-05906-6
- Z. Li, W. Shen, X. Zhang, L. Fang and X. Zu, Colloids Surf. A Physicochem. Eng. Asp., 327, 17 (2008); https://doi.org/10.1016/j.colsurfa.2008.05.043
- M.A. Gondal, Q.A. Drmosh and T.A. Saleh, Appl. Surf. Sci., 256, 7067 (2010); https://doi.org/10.1016/j.apsusc.2010.05.027
- E.C. Nwanna, P.E. Imoisili and T.-C. Jen, J. King Saud Univ. Sci., 34, 102123 (2022); https://doi.org/10.1016/j.jksus.2022.102123
- S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Phys. Chem. Solids, 141, 109407 (2020); https://doi.org/10.1016/j.jpcs.2020.109407
- L. Cheng, S.Y. Ma, X.B. Li, J. Luo, W.Q. Li, F.M. Li, Y.Z. Mao, T.T. Wang and Y.F. Li, Sens. Actuators B Chem., 200, 181 (2014); https://doi.org/10.1016/j.snb.2014.04.063
- Y. Chen, H. Qin, Y. Cao, H. Zhang and J. Hu, Sensors, 18, 3425 (2018); https://doi.org/10.3390/s18103425
- G.E. Patil, D.D. Kajale, V.B. Gaikwad and G.H. Jain, Int. Nano Lett., 2, 17 (2012); https://doi.org/10.1186/2228-5326-2-17
- H. Zhu, D. Yang, G. Yu, H. Zhang and K. Yao, Nanotechnology, 17, 2386 (2006); https://doi.org/10.1088/0957-4484/17/9/052
- P. Chetri and A. Choudhury, Physica E, 47, 257 (2013); https://doi.org/10.1016/j.physe.2012.11.011
- N. Talebian and F. Jafarinezhad, Ceram. Int., 39, 8311 (2013); https://doi.org/10.1016/j.ceramint.2013.03.101
- J. Saddique, H. Shen, J. Ge, X. Huo, N. Rahman, M. Mushtaq, K. Althubeiti and H. Al-Shehri, Materials, 15, 2475 (2022); https://doi.org/10.3390/ma15072475
- A. Elci, O. Demirtas, I.M. Ozturk, A. Bek and E. Nalbant-Esenturk, J. Mater. Sci., 53, 16345 (2018); https://doi.org/10.1007/s10853-018-2792-4
- F. Davar, M. Salavati-Niasari and Z. Fereshteh, J. Alloys Compd., 496, 638 (2010); https://doi.org/10.1016/j.jallcom.2010.02.152
- S.K. Tammina, B.K. Mandal and N.K. Kadiyala, Environ. Nanotechnol. Monit. Manag., 10, 339 (2018); https://doi.org/10.1016/j.enmm.2018.07.006
- S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian and C. Viswanathan, Mater. Sci. Semicond. Process., 30, 585 (2015); https://doi.org/10.1016/j.mssp.2014.10.012
- S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Alloys Compd., 853, 157060 (2021); https://doi.org/10.1016/j.jallcom.2020.157060
- E. Manikandan, J.C. Kannan, V. Devabharathi, S. Pushpa and N. Ahmad Mala, Mater. Today Proc., 80, 1591 (2023); https://doi.org/10.1016/j.matpr.2023.01.395
- J. Jayachandiran, J. Yesuraj, M. Arivanandhan, B. Muthuraaman, R. Jayavel and D. Nedumaran, RSC Adv., 11, 856 (2021); https://doi.org/10.1039/D0RA10137K
- S.N. Pusawale, P.R. Deshmukh and C.D. Lokhande, Appl. Surf. Sci., 257, 9498 (2011); https://doi.org/10.1016/j.apsusc.2011.06.043
- Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar and X. Wu, ACS Appl. Mater. Interfaces, 6, 2174 (2014); https://doi.org/10.1021/am405301v
- A. Bhattacharjee, M. Ahmaruzzaman and T. Sinha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 751 (2015); https://doi.org/10.1016/j.saa.2014.09.092
- S.K. Godlaveeti, A.R. Somala, S.S. Sana, M. Ouladsmane, A.A. Ghfar and R.R. Nagireddy, J. Cluster Sci., 33, 1635 (2022); https://doi.org/10.1007/s10876-021-02092-7
- S. Amuthameena, K. Dhayalini, B. Balraj, C. Siva and N. Senthilkumar, Inorg. Chem. Commun., 131, 108803 (2021); https://doi.org/10.1016/j.inoche.2021.108803
- B. Babu, B. Talluri, T.R. Gurugubelli, J. Kim and K. Yoo, Chemosphere, 286, 131577 (2022); https://doi.org/10.1016/j.chemosphere.2021.131577
- B. Padmaja, S. Dhanapandian, S. Suthakaran, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 149, 110363 (2023); https://doi.org/10.1016/j.inoche.2022.110363
- F.S. Omar, A. Numan, N. Duraisamy, M.M. Ramly, R. K and R. S, Electrochim. Acta, 227, 41 (2017); https://doi.org/10.1016/j.electacta.2017.01.006
- N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh and S. Ramesh, J. Colloid Interface Sci., 471, 136 (2016); https://doi.org/10.1016/j.jcis.2016.03.013
- N. Duraisamy, K. Kandiah, R. Rajendran and G. Dhanaraj, Res. Chem. Intermed., 44, 5653 (2018); https://doi.org/10.1007/s11164-018-3446-5
References
R. Malik, V.K. Tomer, S. Duhan, S.P. Nehra and P.S. Rana, Energy and Environment Focus, 4, 340 (2015); https://doi.org/10.1166/eef.2015.1182.
X. Meng, M. Zhou, X. Li, J. Yao, F. Liu, H. He, P. Xiao and Y. Zhang, Electrochim. Acta, 109, 20 (2013); https://doi.org/10.1016/j.electacta.2013.07.052
S. Ragupathy and T. Sathya, J. Mater. Sci. Mater. Electron., 29, 8710 (2018); https://doi.org/10.1007/s10854-018-8886-6
K. Dhinakar, T. Selvalakshmi, S.M. Sundar and A. Chandra Bose, J. Mater. Sci. Mater. Electron., 27, 5818 (2016); https://doi.org/10.1007/s10854-016-4497-2
S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Mater. Sci. Mater. Electron., 30, 13174 (2019); https://doi.org/10.1007/s10854-019-01681-7
S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, G.U. Sankar, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Energy Storage, 31, 101530 (2020); https://doi.org/10.1016/j.est.2020.101530
J.-Z. Su, X.-F. Wu, Y.-N. Cui, H. Wang, L.-J. Song, J.-L. Shang, Y.-M. Shi, Z.-D. Wang, C.-Y. Zhang and Y.-Q. Zuo, J. Mater. Sci. Mater. Electron., 31, 1585 (2020); https://doi.org/10.1007/s10854-019-02675-1
S.P. Lim, N.M. Huang and H.N. Lim, Ceram. Int., 39, 6647 (2013); https://doi.org/10.1016/j.ceramint.2013.01.102
X. Wang, Y. Yang, P. He, F. Zhang, J. Tang, Z. Guo and R. Que, J. Mater. Sci. Mater. Electron., 31, 1355 (2020); https://doi.org/10.1007/s10854-019-02649-3
A. Murugan, V. Siva, A. Shameem, S.A. Bahadur, S. Sasikumar and N. Nallamuthu, J. Energy Storage, 28, 101194 (2020); https://doi.org/10.1016/j.est.2020.101194
S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, Mater. Res. Express, 6, 0850i3 (2019); https://doi.org/10.1088/2053-1591/ab29c2.
A.P. Periyasamy, Sustainability, 16, 495 (2024); https://doi.org/10.3390/su16020495
Y. Li, R. Peng, X. Xiu, X. Zheng, X. Zhang and G. Zhai, Superlattices Microstruct., 50, 511 (2011); https://doi.org/10.1016/j.spmi.2011.08.013
G.H. Patel, S.H. Chaki, R.M. Kannaujiya, Z.R. Parekh, A.B. Hirpara, A.J. Khimani and M.P. Deshpande, Physica B, 613, 412987 (2021); https://doi.org/10.1016/j.physb.2021.412987
M. Wang, Y. Gao, L. Dai, C. Cao and X. Guo, J. Solid State Chem., 189, 49 (2012); https://doi.org/10.1016/j.jssc.2012.01.021
V. Vinosel, S. Anand, M.A. Janifer, S. Pauline, S. Dhanavel, P. Praveena and A. Stephen, J. Mater. Sci. Mater. Electron., 30, 9663 (2019); https://doi.org/10.1007/s10854-019-01300-5
Y. Wang, C. Ma, X. Sun and H. Li, Nanotechnology, 13, 565 (2002); https://doi.org/10.1088/0957-4484/13/5/304
N.L. Myadam, D.Y. Nadargi, J.D. Nadargi and M.G. Chaskar, J. Sol-Gel Sci. Technol., 96, 56 (2020); https://doi.org/10.1007/s10971-020-05377-x
J. Sheng, H. Tong, H. Xu and C. Tang, Catal. Surv. Asia, 20, 167 (2016); https://doi.org/10.1007/s10563-016-9217-7
K. Prakash, P. Senthil Kumar, S. Pandiaraj, K. Saravanakumar and S. Karuthapandian, J. Exp. Nanosci., 11, 1138 (2016); https://doi.org/10.1080/17458080.2016.1188222
G. Elango and S.M. Roopan, J. Photochem. Photobiol. B, 155, 34 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.010
A. Ayeshamariam, V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. Perumalsamy and M. Jayachandran, J. Nanoelectron. Optoelectron., 8, 273 (2013); https://doi.org/10.1166/jno.2013.1471.
A. Priyadharsini, M. Saravanakumar, J. Suryakanth, S. Pavithra, A. Sakunthala, S. Kavitha, V. Rukkumani and G. Ananthakumari, Bull. Mater. Sci., 46, 205 (2023); https://doi.org/10.1007/s12034-023-03039-6
K.C. Suresh, S. Surendhiran, P. Manoj Kumar, E. Ranjth Kumar, Y.A.S. Khadar and A. Balamurugan, SN Appl. Sci., 2, 1735 (2020); https://doi.org/10.1007/s42452-020-03534-z
S. Naz, I. Javid, S. Konwar, K. Surana, P.K. Singh, M. Sahni and B. Bhattacharya, SN Appl. Sci., 2, 975 (2020); https://doi.org/10.1007/s42452-020-2812-2
A. Abdelkrim, S. Rahmane, O. Abdelouahab, A. Hafida and K. Nabila, Chin. Phys. B, 25, 046801 (2016); https://doi.org/10.1088/1674-1056/25/4/046801
E. Ullah, M.Z.U. Shah, S.A. Ahmad, M. Arif, M.I. Khan, M. Hou, S. Guo, A. Shah and M. Sajjad, Mater. Today Commun., 37, 106889 (2023); https://doi.org/10.1016/j.mtcomm.2023.106889
S.M. Yakout, J. Mater. Sci. Mater. Electron., 30, 17053 (2019); https://doi.org/10.1007/s10854-019-02052-y
K. Rajwali and M.-H. Fang, Chin. Phys. B, 24, 127803 (2015); https://doi.org/10.1088/1674-1056/24/12/127803
R. Rajan and R.E. Vizhi, J. Mater. Sci. Mater. Electron., 32, 12716 (2021); https://doi.org/10.1007/s10854-021-05906-6
Z. Li, W. Shen, X. Zhang, L. Fang and X. Zu, Colloids Surf. A Physicochem. Eng. Asp., 327, 17 (2008); https://doi.org/10.1016/j.colsurfa.2008.05.043
M.A. Gondal, Q.A. Drmosh and T.A. Saleh, Appl. Surf. Sci., 256, 7067 (2010); https://doi.org/10.1016/j.apsusc.2010.05.027
E.C. Nwanna, P.E. Imoisili and T.-C. Jen, J. King Saud Univ. Sci., 34, 102123 (2022); https://doi.org/10.1016/j.jksus.2022.102123
S. Suthakaran, S. Dhanapandian, N. Krishnakumar and N. Ponpandian, J. Phys. Chem. Solids, 141, 109407 (2020); https://doi.org/10.1016/j.jpcs.2020.109407
L. Cheng, S.Y. Ma, X.B. Li, J. Luo, W.Q. Li, F.M. Li, Y.Z. Mao, T.T. Wang and Y.F. Li, Sens. Actuators B Chem., 200, 181 (2014); https://doi.org/10.1016/j.snb.2014.04.063
Y. Chen, H. Qin, Y. Cao, H. Zhang and J. Hu, Sensors, 18, 3425 (2018); https://doi.org/10.3390/s18103425
G.E. Patil, D.D. Kajale, V.B. Gaikwad and G.H. Jain, Int. Nano Lett., 2, 17 (2012); https://doi.org/10.1186/2228-5326-2-17
H. Zhu, D. Yang, G. Yu, H. Zhang and K. Yao, Nanotechnology, 17, 2386 (2006); https://doi.org/10.1088/0957-4484/17/9/052
P. Chetri and A. Choudhury, Physica E, 47, 257 (2013); https://doi.org/10.1016/j.physe.2012.11.011
N. Talebian and F. Jafarinezhad, Ceram. Int., 39, 8311 (2013); https://doi.org/10.1016/j.ceramint.2013.03.101
J. Saddique, H. Shen, J. Ge, X. Huo, N. Rahman, M. Mushtaq, K. Althubeiti and H. Al-Shehri, Materials, 15, 2475 (2022); https://doi.org/10.3390/ma15072475
A. Elci, O. Demirtas, I.M. Ozturk, A. Bek and E. Nalbant-Esenturk, J. Mater. Sci., 53, 16345 (2018); https://doi.org/10.1007/s10853-018-2792-4
F. Davar, M. Salavati-Niasari and Z. Fereshteh, J. Alloys Compd., 496, 638 (2010); https://doi.org/10.1016/j.jallcom.2010.02.152
S.K. Tammina, B.K. Mandal and N.K. Kadiyala, Environ. Nanotechnol. Monit. Manag., 10, 339 (2018); https://doi.org/10.1016/j.enmm.2018.07.006
S. Sonia, S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian and C. Viswanathan, Mater. Sci. Semicond. Process., 30, 585 (2015); https://doi.org/10.1016/j.mssp.2014.10.012
S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai and G. Ravi, J. Alloys Compd., 853, 157060 (2021); https://doi.org/10.1016/j.jallcom.2020.157060
E. Manikandan, J.C. Kannan, V. Devabharathi, S. Pushpa and N. Ahmad Mala, Mater. Today Proc., 80, 1591 (2023); https://doi.org/10.1016/j.matpr.2023.01.395
J. Jayachandiran, J. Yesuraj, M. Arivanandhan, B. Muthuraaman, R. Jayavel and D. Nedumaran, RSC Adv., 11, 856 (2021); https://doi.org/10.1039/D0RA10137K
S.N. Pusawale, P.R. Deshmukh and C.D. Lokhande, Appl. Surf. Sci., 257, 9498 (2011); https://doi.org/10.1016/j.apsusc.2011.06.043
Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar and X. Wu, ACS Appl. Mater. Interfaces, 6, 2174 (2014); https://doi.org/10.1021/am405301v
A. Bhattacharjee, M. Ahmaruzzaman and T. Sinha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 751 (2015); https://doi.org/10.1016/j.saa.2014.09.092
S.K. Godlaveeti, A.R. Somala, S.S. Sana, M. Ouladsmane, A.A. Ghfar and R.R. Nagireddy, J. Cluster Sci., 33, 1635 (2022); https://doi.org/10.1007/s10876-021-02092-7
S. Amuthameena, K. Dhayalini, B. Balraj, C. Siva and N. Senthilkumar, Inorg. Chem. Commun., 131, 108803 (2021); https://doi.org/10.1016/j.inoche.2021.108803
B. Babu, B. Talluri, T.R. Gurugubelli, J. Kim and K. Yoo, Chemosphere, 286, 131577 (2022); https://doi.org/10.1016/j.chemosphere.2021.131577
B. Padmaja, S. Dhanapandian, S. Suthakaran, K. Ashokkumar and N. Krishnakumar, Inorg. Chem. Commun., 149, 110363 (2023); https://doi.org/10.1016/j.inoche.2022.110363
F.S. Omar, A. Numan, N. Duraisamy, M.M. Ramly, R. K and R. S, Electrochim. Acta, 227, 41 (2017); https://doi.org/10.1016/j.electacta.2017.01.006
N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh and S. Ramesh, J. Colloid Interface Sci., 471, 136 (2016); https://doi.org/10.1016/j.jcis.2016.03.013
N. Duraisamy, K. Kandiah, R. Rajendran and G. Dhanaraj, Res. Chem. Intermed., 44, 5653 (2018); https://doi.org/10.1007/s11164-018-3446-5