Copyright (c) 2025 Hafeezur Rehmaan, Jaspal Singh, Payal Devi, Nawal Kishor, Nitish Kumar, Payal Sharma, Anjali

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tailoring of Copper(II) Oxide-Cellulose Nanocomposites for Efficient Photocatalytic Degradation of Thymol Blue
Corresponding Author(s) : Jaspal Singh
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
The widespread release of synthetic dyes into aquatic ecosystems poses a serious environmental risk as a result of their toxicity, persistence and resistance to biodegradation. In this study, cellulose extracted from banana peels was combined with synthesized copper(II) oxide nanoparticles to fabricate CuO-cellulose nanocomposites for visible-light-driven degradation of thymol blue (ThB). The cellulose was isolated through sequential alkaline treatment, bleaching and acid hydrolysis, while CuO nanoparticles were prepared via co-precipitation and subsequent calcination. The nanocomposites were obtained by refluxing CuO with dispersed cellulose under alkaline conditions. Structural and compositional analyses through XRD, FTIR, XPS and FE-SEM/EDX confirmed the monoclinic CuO phase, the preservation of cellulose crystallinity and uniform nanoparticle anchoring on the cellulose matrix. UV-Vis DRS and Tauc analysis revealed that incorporation of cellulose effectively narrowed the band gap of CuO, enhancing visible-light absorption and interfacial charge transfer. Photocatalytic performance was assessed using ThB dye under controlled pH and temperature. Among the investigated compositions, the CuO-cellulose (3%) nanocomposite at 0.20 g/L exhibited the highest degradation efficiency, attributed to improved adsorption capacity, suppressed charge recombination and enhanced ROS generation. The results demonstrate the synergistic interaction between CuO and cellulose, offering a low-cost, sustainable and efficient photocatalyst for the removal of organic pollutant under visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.O. Alegbeleye and A.S. Sant’Ana, Int. J. Hyg. Environ. Health, 227, 113524 (2020); https://doi.org/10.1016/j.ijheh.2020.113524
- C. Hu, X. Yan, W. Gong, X. Liu, L. Wang and L. Gao, Swarm Evol. Comput., 55, 100674 (2020); https://doi.org/10.1016/j.swevo.2020.100674
- Q.L. Chen and H.L. Chen, J. Nanopart. Res., 26, 189 (2024); https://doi.org/10.1007/s11051-024-06105-0
- J. Gao, H. Jang, L. Huang and K.R. Matthews, Int. J. Food Microbiol., 323, 108593 (2020); https://doi.org/10.1016/j.ijfoodmicro.2020.108593
- B. Prandi, A. Faccini, F. Lambertini, M. Bencivenni, M. Jorba, B. Van Droogenbroek, G. Bruggeman, J. Schöber, J. Petrusan, K. Elst and S. Sforza, Food Chem., 286, 567 (2019); https://doi.org/10.1016/j.foodchem.2019.01.166
- V.K. Gaur, P. Sharma, R. Sirohi, M.K. Awasthi, C.G. Dussap and A. Pandey, J. Hazard. Mater., 398, 123019 (2020); https://doi.org/10.1016/j.jhazmat.2020.123019
- N. Tavker and M. Sharma, J. Environ. Manage., 255, 109906 (2020); https://doi.org/10.1016/j.jenvman.2019.109906
- X. Zheng, W. Chen, M. Xu, C. Cai and F. Yang, J. Nanopart. Res., 25, 96 (2023); https://doi.org/10.1007/s11051-023-05748-9
- J. Duraimurugan, Optik, 202, (2020); https://doi.org/10.1016/j.ijleo.2019.163607
- M. Maruthupandy, P. Qin, T. Muneeswaran, G. Rajivgandhi, F. Quero and J.M. Song, Mater. Sci. Eng. B, 254, 114516 (2020); https://doi.org/10.1016/j.mseb.2020.114516
- M. Kadhom, N. Albayati, H. Alalwan and M. Al-Furaiji, Sustain. Chem. Pharm., 16, 100259 (2020); https://doi.org/10.1016/j.scp.2020.100259
- H. Soni, N. Kumar, K. Patel and R.N. Kumar, Desalination Water Treat., 57, 19857 (2016); https://doi.org/10.1080/19443994.2015.1102091
- K. Rokesh, S.C. Mohan, S. Karuppuchamy and K. Jothivenkatachalam, J. Environ. Chem. Eng., 6, 3610 (2018); https://doi.org/10.1016/j.jece.2017.01.023
- M. Hasanpour and M. Hatami, J. Mol. Liq., 309, 113094 (2020); https://doi.org/10.1016/j.molliq.2020.113094
- O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam and J. Panpranot, Chem. Eng. J., 164, 77 (2010); https://doi.org/10.1016/j.cej.2010.08.027
- L. Abramian and H. El-Rassy, Chem. Eng. J., 150, 403 (2009); https://doi.org/10.1016/j.cej.2009.01.019
- I. Ali and V.K. Gupta, Nat. Protoc., 1, 2661 (2006); https://doi.org/10.1038/nprot.2006.370
- G.K. Upadhyay, J.K. Rajput, T.K. Pathak, P.K. Pal and L.P. Purohit, Appl. Surf. Sci., 509, 145326 (2020); https://doi.org/10.1016/j.apsusc.2020.145326
- C.A. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo and M. Macías, Catal. Today, 313, 12 (2018); https://doi.org/10.1016/j.cattod.2017.12.009
- P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat and S. Thongtem, Superlattices Microstruct., 64, 196 (2013); https://doi.org/10.1016/j.spmi.2013.09.028
- A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem and T. Thongtem, Superlattices Microstruct., 78, 106 (2015); https://doi.org/10.1016/j.spmi.2014.11.038
- S.S.P. Selvin, N. Radhika, O. Borang, S. Lydia and J.P. Merlin, J. Mater. Sci. Mater. Electron., 28, 6722 (2017); https://doi.org/10.1007/s10854-017-6367-y
- R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089
- M. Shkir, B.M. Al-Shehri, M.P. Pachamuthu, A. Khan, K.V. Chandekar, S. AlFaify and M.S. Hamdy, Colloids Surf. A Physicochem. Eng. Asp., 587, 124340 (2020); https://doi.org/10.1016/j.colsurfa.2019.124340
- Z. Sun, L. Shi, Y. Li, L. Liu, Z. Liu, Z. Yin and X. Qu, J. Nanopart. Res., 24, 220 (2022); https://doi.org/10.1007/s11051-022-05599-w
- R. Bedoić, A. Špehar, J. Puljko, L. Čuček, B. Ćosić, T. Pukšec and N. Duić, Renew. Sustain. Energy Rev., 130, 109951 (2020); https://doi.org/10.1016/j.rser.2020.109951
- S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir and T. Kilicoglu, J. Sol-Gel Sci. Technol., 78, 422 (2016); https://doi.org/10.1007/s10971-015-3953-4
- A. Wongrakpanich, I.A. Mudunkotuwa, S.M. Geary, A.S. Morris, K.A. Mapuskar, D.R. Spitz, V.H. Grassian and A.K. Salem, Environ. Sci. Nano, 3, 365 (2016); https://doi.org/10.1039/C5EN00271K
- H.W. Wu, S.Y. Lee, W.C. Lu and K.S. Chang, Appl. Surf. Sci., 344, 236 (2015); https://doi.org/10.1016/j.apsusc.2015.03.122.
- S.H. Kim, A. Umar and S.W. Hwang, Ceram. Int., 41, 9468 (2015); https://doi.org/10.1016/j.ceramint.2015.04.003
- T. Baran, A. Visibile, M. Busch, X. He, S. Wojtyla, S. Rondinini, A. Minguzzi and A. Vertova, Molecules, 26, 7271 (2021); https://doi.org/10.3390/molecules26237271
- A.M. Ibrahim, A.R. Galaly, M.Sh. Abdel-Wahab, M. Shaban, W.Z. Tawfik and M.T. Tammama, RSC Adv., 15, 24612 (2025); https://doi.org/10.1039/D5RA04234H
- S.V. Gupta, V.V. Kulkarni and M. Ahmaruzzaman, Sci. Rep., 13, 3009 (2023); https://doi.org/10.1038/s41598-023-30096-y
- X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu, H. Liu and B. Fang, J. Phys. Chem. C, 112, 16845 (2008); https://doi.org/10.1021/jp806985k
- M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang and J.S. Lee, Catal. Commun., 10, 11 (2008); https://doi.org/10.1016/j.catcom.2008.07.022
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu and S. Yang, Prog. Mater. Sci., 60, 208 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.003
- A. Alam, A. Hassan, Z. Sultana and N. Das, RSC Sustain., 3, 5027 (2025); https://doi.org/10.1039/D5SU00369E
- Y. Yang, X. Li, C. Wan, Z. Zhang, W. Cao, G. Wang and Y. Wu, Collagen & Leather, 6, 35 (2024); https://doi.org/10.1186/s42825-024-00179-1
- J.H. Kim, B.S. Shim, H.S. Kim, Y.J. Lee, S.K. Min, D. Jang, Z. Abas and J. Kim, Int. J. Precis. Eng. Manuf. Green Technol., 2, 197 (2015); https://doi.org/10.1007/s40684-015-0024-9
- C. Katepetch, R. Rujiravanit and H. Tamura, Cellulose, 20, 1275 (2013); https://doi.org/10.1007/s10570-013-9892-8
- Y. Kuang, X. Zhang and S. Zhou, Water, 12, 587 (2020); https://doi.org/10.3390/w12020587
- S. Sowrirajan, G. Maheshwari and B. Joseph, Mater. Today Proc., 55, 226 (2022); https://doi.org/10.1016/j.matpr.2021.06.342
- G. Manjari, S. Saran, T. Arun, A. Vijaya Bhaskara Rao and S.P. Devipriya, J. Saudi Chem. Soc., 21, 610 (2017); https://doi.org/10.1016/j.jscs.2017.02.004
- H.A. Al-Aoh, I.A.M. Mihaina, M.A. Alsharif, A.A.A. Darwish, M. Rashad, S.K. Mustafa, M.M.H. Aljohani, M.A. Al-Duais and H.S. Al-Shehri, Chem. Eng. Commun., 207, 1719 (2020); https://doi.org/10.1080/00986445.2019.1680366
- V. Srivastava and A.K. Choubey, J. Mol. Struct., 1242, 130749 (2021); https://doi.org/10.1016/j.molstruc.2021.130749
- T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar and F. Iqbal, Mater. Chem. Phys., 249, 122983 (2020); https://doi.org/10.1016/j.matchemphys.2020.122983
- S. Kumar, R.D. Kaushik and L.P. Purohit, J. Colloid Interface Sci., 632, 196 (2023); https://doi.org/10.1016/j.jcis.2022.11.040
- P. Mallick, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84, 387 (2014); https://doi.org/10.1007/s40010-014-0131-y
- R.K. Hussain, W.J. Aziz and I.A. Ibrahim, J. Nanostruct., 9, 761 (2019); https://doi.org/10.22052/JNS.2019.04.017
- V. Bisla, G. Rattan, S. Singhal and A. Kaushik, Int. J. Biol. Macromol., 161, 194 (2020); https://doi.org/10.1016/j.ijbiomac.2020.06.035
- I.M.S. Araújo, R.R. Silva, G. Pacheco, W.R. Lustri, A. Tercjak, J. Gutierrez, J.R.S. Júnior, F.H.C. Azevedo, G.S. Figuêredo, M.L. Vega, S.J.L. Ribeiro and H.S. Barud, Carbohydr. Polym., 179, 341 (2018); https://doi.org/10.1016/j.carbpol.2017.09.081
- P. Sagar, M. Srivastava and S.K. Srivastava, ChemistrySelect, 7, 202202271 (2022); https://doi.org/10.1002/slct.202202271
- S. Kumaraguru, S. Raghu, R. Subadevi, M. Sivakumar and R. Gnanamuthu, Ionics, 27, 5043 (2021); https://doi.org/10.1007/s11581-021-04155-1
- S. Kumaraguru, S. Raghu, P. Rajkumar, R. Subadevi, M. Sivakumar, C.W. Lee and R.M. Gnanamuthu, Ionics, 27, 1049 (2021); https://doi.org/10.1007/s11581-021-03901-9
- M. Khandelwal, K. Soni, K.P. Misra, A. Bagaria, D.S. Rathore, G. Pemawat, R. Singh and R.K. Khangarot, RSC Adv., 15, 3365 (2025); https://doi.org/10.1039/D4RA08437C
- A.L.T. Zheng, S. Sabidi, M.A. Maran, K.B. Tan, K. Wong, E.L.T. Chung and Y. Andom, BioResources, 20, 9148 (2025); https://doi.org/10.15376/biores.20.4.9148-9166
- A.S. Elfeky, S.S. Salem, A.S. Elzaref, M.E. Owda, H.A. Eladawy, A.M. Saeed, M.A. Awad, R.E. Abou-Zeid and A. Fouda, Carbohydr. Polym., 230, 115711 (2020); https://doi.org/10.1016/j.carbpol.2019.115711
- P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar and R. Sasikala, Appl. Catal. B, 107, 333 (2011); https://doi.org/10.1016/j.apcatb.2011.07.033
- T.K. Ghorai, D. Dhak, S. Dalai and P. Pramanik, Mater. Res. Bull., 43, 1770 (2008); https://doi.org/10.1016/j.materresbull.2007.07.009
- A. Kumar, C.J. Raorane, A. Syed, A.H. Bahkali, A.M. Elgorban, V. Raj and S.C. Kim, Environ. Res., 216, 114741 (2023); https://doi.org/10.1016/j.envres.2022.114741
References
O.O. Alegbeleye and A.S. Sant’Ana, Int. J. Hyg. Environ. Health, 227, 113524 (2020); https://doi.org/10.1016/j.ijheh.2020.113524
C. Hu, X. Yan, W. Gong, X. Liu, L. Wang and L. Gao, Swarm Evol. Comput., 55, 100674 (2020); https://doi.org/10.1016/j.swevo.2020.100674
Q.L. Chen and H.L. Chen, J. Nanopart. Res., 26, 189 (2024); https://doi.org/10.1007/s11051-024-06105-0
J. Gao, H. Jang, L. Huang and K.R. Matthews, Int. J. Food Microbiol., 323, 108593 (2020); https://doi.org/10.1016/j.ijfoodmicro.2020.108593
B. Prandi, A. Faccini, F. Lambertini, M. Bencivenni, M. Jorba, B. Van Droogenbroek, G. Bruggeman, J. Schöber, J. Petrusan, K. Elst and S. Sforza, Food Chem., 286, 567 (2019); https://doi.org/10.1016/j.foodchem.2019.01.166
V.K. Gaur, P. Sharma, R. Sirohi, M.K. Awasthi, C.G. Dussap and A. Pandey, J. Hazard. Mater., 398, 123019 (2020); https://doi.org/10.1016/j.jhazmat.2020.123019
N. Tavker and M. Sharma, J. Environ. Manage., 255, 109906 (2020); https://doi.org/10.1016/j.jenvman.2019.109906
X. Zheng, W. Chen, M. Xu, C. Cai and F. Yang, J. Nanopart. Res., 25, 96 (2023); https://doi.org/10.1007/s11051-023-05748-9
J. Duraimurugan, Optik, 202, (2020); https://doi.org/10.1016/j.ijleo.2019.163607
M. Maruthupandy, P. Qin, T. Muneeswaran, G. Rajivgandhi, F. Quero and J.M. Song, Mater. Sci. Eng. B, 254, 114516 (2020); https://doi.org/10.1016/j.mseb.2020.114516
M. Kadhom, N. Albayati, H. Alalwan and M. Al-Furaiji, Sustain. Chem. Pharm., 16, 100259 (2020); https://doi.org/10.1016/j.scp.2020.100259
H. Soni, N. Kumar, K. Patel and R.N. Kumar, Desalination Water Treat., 57, 19857 (2016); https://doi.org/10.1080/19443994.2015.1102091
K. Rokesh, S.C. Mohan, S. Karuppuchamy and K. Jothivenkatachalam, J. Environ. Chem. Eng., 6, 3610 (2018); https://doi.org/10.1016/j.jece.2017.01.023
M. Hasanpour and M. Hatami, J. Mol. Liq., 309, 113094 (2020); https://doi.org/10.1016/j.molliq.2020.113094
O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam and J. Panpranot, Chem. Eng. J., 164, 77 (2010); https://doi.org/10.1016/j.cej.2010.08.027
L. Abramian and H. El-Rassy, Chem. Eng. J., 150, 403 (2009); https://doi.org/10.1016/j.cej.2009.01.019
I. Ali and V.K. Gupta, Nat. Protoc., 1, 2661 (2006); https://doi.org/10.1038/nprot.2006.370
G.K. Upadhyay, J.K. Rajput, T.K. Pathak, P.K. Pal and L.P. Purohit, Appl. Surf. Sci., 509, 145326 (2020); https://doi.org/10.1016/j.apsusc.2020.145326
C.A. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo and M. Macías, Catal. Today, 313, 12 (2018); https://doi.org/10.1016/j.cattod.2017.12.009
P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat and S. Thongtem, Superlattices Microstruct., 64, 196 (2013); https://doi.org/10.1016/j.spmi.2013.09.028
A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem and T. Thongtem, Superlattices Microstruct., 78, 106 (2015); https://doi.org/10.1016/j.spmi.2014.11.038
S.S.P. Selvin, N. Radhika, O. Borang, S. Lydia and J.P. Merlin, J. Mater. Sci. Mater. Electron., 28, 6722 (2017); https://doi.org/10.1007/s10854-017-6367-y
R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089
M. Shkir, B.M. Al-Shehri, M.P. Pachamuthu, A. Khan, K.V. Chandekar, S. AlFaify and M.S. Hamdy, Colloids Surf. A Physicochem. Eng. Asp., 587, 124340 (2020); https://doi.org/10.1016/j.colsurfa.2019.124340
Z. Sun, L. Shi, Y. Li, L. Liu, Z. Liu, Z. Yin and X. Qu, J. Nanopart. Res., 24, 220 (2022); https://doi.org/10.1007/s11051-022-05599-w
R. Bedoić, A. Špehar, J. Puljko, L. Čuček, B. Ćosić, T. Pukšec and N. Duić, Renew. Sustain. Energy Rev., 130, 109951 (2020); https://doi.org/10.1016/j.rser.2020.109951
S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir and T. Kilicoglu, J. Sol-Gel Sci. Technol., 78, 422 (2016); https://doi.org/10.1007/s10971-015-3953-4
A. Wongrakpanich, I.A. Mudunkotuwa, S.M. Geary, A.S. Morris, K.A. Mapuskar, D.R. Spitz, V.H. Grassian and A.K. Salem, Environ. Sci. Nano, 3, 365 (2016); https://doi.org/10.1039/C5EN00271K
H.W. Wu, S.Y. Lee, W.C. Lu and K.S. Chang, Appl. Surf. Sci., 344, 236 (2015); https://doi.org/10.1016/j.apsusc.2015.03.122.
S.H. Kim, A. Umar and S.W. Hwang, Ceram. Int., 41, 9468 (2015); https://doi.org/10.1016/j.ceramint.2015.04.003
T. Baran, A. Visibile, M. Busch, X. He, S. Wojtyla, S. Rondinini, A. Minguzzi and A. Vertova, Molecules, 26, 7271 (2021); https://doi.org/10.3390/molecules26237271
A.M. Ibrahim, A.R. Galaly, M.Sh. Abdel-Wahab, M. Shaban, W.Z. Tawfik and M.T. Tammama, RSC Adv., 15, 24612 (2025); https://doi.org/10.1039/D5RA04234H
S.V. Gupta, V.V. Kulkarni and M. Ahmaruzzaman, Sci. Rep., 13, 3009 (2023); https://doi.org/10.1038/s41598-023-30096-y
X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu, H. Liu and B. Fang, J. Phys. Chem. C, 112, 16845 (2008); https://doi.org/10.1021/jp806985k
M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang and J.S. Lee, Catal. Commun., 10, 11 (2008); https://doi.org/10.1016/j.catcom.2008.07.022
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu and S. Yang, Prog. Mater. Sci., 60, 208 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.003
A. Alam, A. Hassan, Z. Sultana and N. Das, RSC Sustain., 3, 5027 (2025); https://doi.org/10.1039/D5SU00369E
Y. Yang, X. Li, C. Wan, Z. Zhang, W. Cao, G. Wang and Y. Wu, Collagen & Leather, 6, 35 (2024); https://doi.org/10.1186/s42825-024-00179-1
J.H. Kim, B.S. Shim, H.S. Kim, Y.J. Lee, S.K. Min, D. Jang, Z. Abas and J. Kim, Int. J. Precis. Eng. Manuf. Green Technol., 2, 197 (2015); https://doi.org/10.1007/s40684-015-0024-9
C. Katepetch, R. Rujiravanit and H. Tamura, Cellulose, 20, 1275 (2013); https://doi.org/10.1007/s10570-013-9892-8
Y. Kuang, X. Zhang and S. Zhou, Water, 12, 587 (2020); https://doi.org/10.3390/w12020587
S. Sowrirajan, G. Maheshwari and B. Joseph, Mater. Today Proc., 55, 226 (2022); https://doi.org/10.1016/j.matpr.2021.06.342
G. Manjari, S. Saran, T. Arun, A. Vijaya Bhaskara Rao and S.P. Devipriya, J. Saudi Chem. Soc., 21, 610 (2017); https://doi.org/10.1016/j.jscs.2017.02.004
H.A. Al-Aoh, I.A.M. Mihaina, M.A. Alsharif, A.A.A. Darwish, M. Rashad, S.K. Mustafa, M.M.H. Aljohani, M.A. Al-Duais and H.S. Al-Shehri, Chem. Eng. Commun., 207, 1719 (2020); https://doi.org/10.1080/00986445.2019.1680366
V. Srivastava and A.K. Choubey, J. Mol. Struct., 1242, 130749 (2021); https://doi.org/10.1016/j.molstruc.2021.130749
T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar and F. Iqbal, Mater. Chem. Phys., 249, 122983 (2020); https://doi.org/10.1016/j.matchemphys.2020.122983
S. Kumar, R.D. Kaushik and L.P. Purohit, J. Colloid Interface Sci., 632, 196 (2023); https://doi.org/10.1016/j.jcis.2022.11.040
P. Mallick, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84, 387 (2014); https://doi.org/10.1007/s40010-014-0131-y
R.K. Hussain, W.J. Aziz and I.A. Ibrahim, J. Nanostruct., 9, 761 (2019); https://doi.org/10.22052/JNS.2019.04.017
V. Bisla, G. Rattan, S. Singhal and A. Kaushik, Int. J. Biol. Macromol., 161, 194 (2020); https://doi.org/10.1016/j.ijbiomac.2020.06.035
I.M.S. Araújo, R.R. Silva, G. Pacheco, W.R. Lustri, A. Tercjak, J. Gutierrez, J.R.S. Júnior, F.H.C. Azevedo, G.S. Figuêredo, M.L. Vega, S.J.L. Ribeiro and H.S. Barud, Carbohydr. Polym., 179, 341 (2018); https://doi.org/10.1016/j.carbpol.2017.09.081
P. Sagar, M. Srivastava and S.K. Srivastava, ChemistrySelect, 7, 202202271 (2022); https://doi.org/10.1002/slct.202202271
S. Kumaraguru, S. Raghu, R. Subadevi, M. Sivakumar and R. Gnanamuthu, Ionics, 27, 5043 (2021); https://doi.org/10.1007/s11581-021-04155-1
S. Kumaraguru, S. Raghu, P. Rajkumar, R. Subadevi, M. Sivakumar, C.W. Lee and R.M. Gnanamuthu, Ionics, 27, 1049 (2021); https://doi.org/10.1007/s11581-021-03901-9
M. Khandelwal, K. Soni, K.P. Misra, A. Bagaria, D.S. Rathore, G. Pemawat, R. Singh and R.K. Khangarot, RSC Adv., 15, 3365 (2025); https://doi.org/10.1039/D4RA08437C
A.L.T. Zheng, S. Sabidi, M.A. Maran, K.B. Tan, K. Wong, E.L.T. Chung and Y. Andom, BioResources, 20, 9148 (2025); https://doi.org/10.15376/biores.20.4.9148-9166
A.S. Elfeky, S.S. Salem, A.S. Elzaref, M.E. Owda, H.A. Eladawy, A.M. Saeed, M.A. Awad, R.E. Abou-Zeid and A. Fouda, Carbohydr. Polym., 230, 115711 (2020); https://doi.org/10.1016/j.carbpol.2019.115711
P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar and R. Sasikala, Appl. Catal. B, 107, 333 (2011); https://doi.org/10.1016/j.apcatb.2011.07.033
T.K. Ghorai, D. Dhak, S. Dalai and P. Pramanik, Mater. Res. Bull., 43, 1770 (2008); https://doi.org/10.1016/j.materresbull.2007.07.009
A. Kumar, C.J. Raorane, A. Syed, A.H. Bahkali, A.M. Elgorban, V. Raj and S.C. Kim, Environ. Res., 216, 114741 (2023); https://doi.org/10.1016/j.envres.2022.114741