Copyright (c) 2025 Thabo, Conny, Lutendo Macevele

This work is licensed under a Creative Commons Attribution 4.0 International License.
Application of Chitosan-based Zirconia Hybrid Composite Functionalized with Multi-Walled Carbon Nanotubes for Efficient Removal of Humic Acid from Water Samples
Corresponding Author(s) : L.E. Macevele
Asian Journal of Chemistry,
Vol. 38 No. 1 (2026): Vol 38 Issue 1, 2026
Abstract
Humic acid (HA) is abundant in soil and aquatic systems and can hinder wastewater treatment by affecting the removal of heavy metals and other contaminants. Herein, this study presents chitosan-zirconia (CTS-ZrO2) composites doped with functionalized multi-walled carbon nanotubes (f-MWCNTs) for HA adsorption. The composites were characterized using TGA, BET, EDX, XRD, FTIR and SEM. Batch experiments assessed the effects of pH (2-8), adsorbent dosage (1-5 g L-1), initial HA concentration (10-50 mg L-1), contact time (5-240 min), temperature (25-40 ºC), ionic strength, reusability and binary systems. The CT-ZrO2-f-MWCNTs composite exhibited a maximum adsorption capacity of 32.89 mg g-1 at pH 3, dosage of 2 g L-1, initial HA concentration of 10 mg L-1 and 25 ºC, achieving 99.04% removal within 30 min. The adsorbent remained effective after five cycles and isotherm studies indicated that adsorption followed the Langmuir Type II model, suggesting multilayer adsorption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Arumugam, K.E. Lee, P.Y. Ng, A.S. Shamsuddin, A. Zulkifli and T.L. Goh, Emerg. Contam., 11, 100470 (2025); https://doi.org/10.1016/j.emcon.2025.100470
- R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi and A. Saraswat, Case Stud. Chem. Environ. Eng., 6, 100219 (2022); https://doi.org/10.1016/j.cscee.2022.100219
- R.S. Das, A. Kumar, A.V. Wankhade and D.R. Peshwe, Carbohydr. Polym., 278, 118940 (2022); https://doi.org/10.1016/j.carbpol.2021.118940
- J. Li, Y. Dai, Q. Su, B. Wang and L. Hou, Environ. Funct. Mater, (2025); https://doi.org/10.1016/j.efmat.2025.03.002
- J. Wilkinson, P.S. Hooda, J. Barker, S. Barton and J. Swinden, Environ. Pollut., 231, 954 (2017); https://doi.org/10.1016/j.envpol.2017.08.032
- B.S. Rathi and P.S. Kumar, Environ. Pollut., 280, 116995 (2021); https://doi.org/10.1016/j.envpol.2021.116995
- R.S. Ribeiro, R.O. Rodrigues, A.M.T. Silva, P.B. Tavares, A.M.C. Carvalho, J.L. Figueiredo, J.L. Faria and H.T. Gomes, Appl. Catal. B, 219, 645 (2017); https://doi.org/10.1016/j.apcatb.2017.08.013
- A. Rao, A. Kumar, R. Dhodapkar and S. Pal, Environ. Sci. Pollut. Res. Int., 28, 21347 (2021); https://doi.org/10.1007/s11356-020-12014-1
- S. Li, M. He, Z. Li, D. Li and Z. Pan, J. Mol. Liq., 230, 520 (2017); https://doi.org/10.1016/j.molliq.2017.01.027
- M. Sabri, H. Kazim, M. Tawalbeh, A. Al-Othman and F. Almomani, Chemosphere, 365, 143373 (2024); https://doi.org/10.1016/j.chemosphere.2024.143373
- S. Wang and Z.H. Zhu, J. Colloid Interface Sci., 315, 41 (2007); https://doi.org/10.1016/j.jcis.2007.06.034
- R. Khakpour and H. Tahermansouri, Int. J. Biol. Macromol., 109, 598 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.105
- A. Munwana and L.E. Macevele, Dig. J. Nanomater. Biostruct., 20, 227 (2025); https://doi.org/10.15251/DJNB.2025.201.227
- M. Nazaripour, M.A.M. Reshadi, S.A. Mirbagheri, M. Nazaripour and A. Bazargan, J. Environ. Manage., 287, 112322 (2021); https://doi.org/10.1016/j.jenvman.2021.112322
- M. Keshvardoostchokami, M. Majidi, A. Zamani and B. Liu, Carbohydr. Polym., 273, 118625 (2021); https://doi.org/10.1016/j.carbpol.2021.118625
- M.A. Kaczorowska and D. Bożejewicz, Sustainability, 16, 2615 (2024); https://doi.org/10.3390/su16072615
- K.A. Omran, M.R. El-Aassar, O.M. Ibrahim, S.A. Sharaewy, R.E. Khalifa and F.M. Mohamed, Desalination Water Treat., 317, 100294 (2024); https://doi.org/10.1016/j.dwt.2024.100294
- M.S. Rostami and M.M. Khodaei, Int. J. Biol. Macromol., 270, 132386 (2024); https://doi.org/10.1016/j.ijbiomac.2024.132386
- M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, K.B. Tan, M.H. Ibrahim, Z. Gholami and P. Amouzgar, Carbohydr. Polym., 113, 115 (2014); https://doi.org/10.1016/j.carbpol.2014.07.007
- K. Mohan, D. Karthick Rajan, J. Rajarajeswaran, D. Divya and A. Ramu Ganesan, Curr. Opin. Environ. Sci. Health, 33, 100473 (2023); https://doi.org/10.1016/j.coesh.2023.100473
- J. Jin, H. Zhang, A.A. Aryee, Y. Wang, R. safdar, W. Shi, L. Qu and R. Han, Int. J. Biol. Macromol., 320, 144779 (2025); https://doi.org/10.1016/j.ijbiomac.2025.144779
- S.S. Elanchezhiyan, N. Sivasurian and S. Meenakshi, Carbohydr. Polym., 145, 103 (2016); https://doi.org/10.1016/j.carbpol.2016.02.038
- S. Sonal and B.K. Mishra, Chem. Eng. J., 424, 130509 (2021); https://doi.org/10.1016/j.cej.2021.130509
- R.S. Das, S.K. Warkhade, A. Kumar and A.V. Wankhade, Res. Chem. Intermed., 45, 1689 (2019); https://doi.org/10.1007/s11164-018-3699-z
- A. Khazaie, H. Kia, E. Moniri, A.H. Hassani and M. Miralinaghi, J. Taiwan Inst. Chem. Eng., 144, 104743 (2023); https://doi.org/10.1016/j.jtice.2023.104743
- L.P.L. Gonçalves, M. Meledina, A. Meledin, D.Y. Petrovykh, J.P.S. Sousa, O.S.G.P. Soares, Y.V. Kolen’ko and M.F.R. Pereira, Carbon, 195, 35 (2022); https://doi.org/10.1016/j.carbon.2022.03.059
- K. Azlan, W.N. Wan Saime and L. Lai Ken, J. Environ. Sci. (China), 21, 296 (2009); https://doi.org/10.1016/S1001-0742(08)62267-6
- M. Khodakarami and R. Honaker, J. Hazard. Mater. Adv., 912, 169519 (2024); https://doi.org/10.1016/j.scitotenv.2023.169519
- L.L. Borba, R.M.F. Cuba, F.J. Cuba Terán, M.N. Castro and T.A. Mendes, Brazilian Arch. Biol. Technol., 62, (2019); https://doi.org/10.1590/1678-4324-2019180450
- N. Sun, Y. Zhang, L. Ma, S. Yu and J. Li, J. Taiwan Inst. Chem. Eng., 78, 96 (2017); https://doi.org/10.1016/j.jtice.2017.03.017
- N.F. Shoparwe, L.C. Kee, T.A. Otitoju, H. Shukor, N. Zainuddin and M.M.Z. Makhtar, Membranes (Basel), 11, 721 (2021); https://doi.org/10.3390/membranes11090721
- L.E. Macevele, K.L.M. Moganedi and T. Magadzu, J. Compos. Sci., 8, 119 (2024); https://doi.org/10.3390/jcs8040119
- N.B. Mkhondo and T. Magadzu, Dig. J. Nanomater. Biostruct., 9, 1331 (2014).
- M. Kosmulski, Adv. Colloid Interface Sci., 319, 102973 (2023); https://doi.org/10.1016/j.cis.2023.102973
- N.V. Perez-Aguilar, E. Muñoz-Sandoval, P.E. Diaz-Flores and J.R. Rangel-Mendez, J. Nanopart. Res., 12, 467 (2010); https://doi.org/10.1007/s11051-009-9670-6
- T. Zhou, S. Huang, D. Niu, L. Su, G. Zhen and Y. Zhao, ACS Sustain. Chem.& Eng., 6, 5981 (2018); https://doi.org/10.1021/acssuschemeng.7b04507
- A.A.M. Daifullah, B.S. Girgis and H.M.H. Gad, Colloids Surf. A Physicochem. Eng. Asp., 235, 1 (2004); https://doi.org/10.1016/j.colsurfa.2003.12.020
- R. Kecili, C.M. Hussain, Elsevier Inc., (2018); https://doi.org/10.1016/B978-0-12-812792-6.00004-2
- N. Hilmioglu and E. Yumat, Water Air Soil Pollut., 235, 293 (2024); https://doi.org/10.1007/s11270-024-07044-1
- A.K. Tolkou, I.A. Katsoyiannis and G.Z. Kyzas, J. Compos. Sci., 9, 327 (2025); https://doi.org/10.3390/jcs9070327
- M. Wang, L. Liao, X. Zhang and Z. Li, Appl. Clay Sci., 67–68, 164 (2012); https://doi.org/10.1016/j.clay.2011.09.012
- S. Deng and R. Bai, J. Colloid Interface Sci., 280, 36 (2004); https://doi.org/10.1016/j.jcis.2004.07.007
- G. Moussavi, S. Talebi, M. Farrokhi and R.M. Sabouti, Chem. Eng. J., 171, 1159 (2011); https://doi.org/10.1016/j.cej.2011.05.016
- C. Zhang, J. Sui, J. Li, Y. Tang and W. Cai, Chem. Eng. J., 210, 45 (2012); https://doi.org/10.1016/j.cej.2012.08.062
- L.E. Macevele, K. Lydia, M. Moganedi, T. Magadzu, J. membr. sci. res., 7, 152 (2021); https://doi.org/10.22079/JMSR.2020.121858.1351
- M.A. Islam, D.W. Morton, B.B. Johnson and M.J. Angove, Separ. Purif. Tech., 247, 116949 (2020); https://doi.org/10.1016/j.seppur.2020.116949
- G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès and M. Krimissa, Appl. Geochem., 22, 249 (2007); https://doi.org/10.1016/j.apgeochem.2006.09.010
- X. Hu and Z. Cheng, Chin. J. Chem. Eng., 23, 1551 (2015); https://doi.org/10.1016/j.cjche.2015.06.010
- X. Wei, Y. Shi, Y. Fei, J. Chen, B. Lv, Y. Chen, H. Zheng, J. Shen and L. Zhu, Chem. Eng. J., 292, 382 (2016); https://doi.org/10.1016/j.cej.2016.02.037
- L. Sellaoui, F.E. Soetaredjo, N. Sghaier, A. Erto, T. Saidani, N. Alwadai, M. Badawi, G.L. Dotto and S. Ismadji, Appl. Clay Sci., 276, 107922 (2025); https://doi.org/10.1016/j.clay.2025.107922
References
A. Arumugam, K.E. Lee, P.Y. Ng, A.S. Shamsuddin, A. Zulkifli and T.L. Goh, Emerg. Contam., 11, 100470 (2025); https://doi.org/10.1016/j.emcon.2025.100470
R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi and A. Saraswat, Case Stud. Chem. Environ. Eng., 6, 100219 (2022); https://doi.org/10.1016/j.cscee.2022.100219
R.S. Das, A. Kumar, A.V. Wankhade and D.R. Peshwe, Carbohydr. Polym., 278, 118940 (2022); https://doi.org/10.1016/j.carbpol.2021.118940
J. Li, Y. Dai, Q. Su, B. Wang and L. Hou, Environ. Funct. Mater, (2025); https://doi.org/10.1016/j.efmat.2025.03.002
J. Wilkinson, P.S. Hooda, J. Barker, S. Barton and J. Swinden, Environ. Pollut., 231, 954 (2017); https://doi.org/10.1016/j.envpol.2017.08.032
B.S. Rathi and P.S. Kumar, Environ. Pollut., 280, 116995 (2021); https://doi.org/10.1016/j.envpol.2021.116995
R.S. Ribeiro, R.O. Rodrigues, A.M.T. Silva, P.B. Tavares, A.M.C. Carvalho, J.L. Figueiredo, J.L. Faria and H.T. Gomes, Appl. Catal. B, 219, 645 (2017); https://doi.org/10.1016/j.apcatb.2017.08.013
A. Rao, A. Kumar, R. Dhodapkar and S. Pal, Environ. Sci. Pollut. Res. Int., 28, 21347 (2021); https://doi.org/10.1007/s11356-020-12014-1
S. Li, M. He, Z. Li, D. Li and Z. Pan, J. Mol. Liq., 230, 520 (2017); https://doi.org/10.1016/j.molliq.2017.01.027
M. Sabri, H. Kazim, M. Tawalbeh, A. Al-Othman and F. Almomani, Chemosphere, 365, 143373 (2024); https://doi.org/10.1016/j.chemosphere.2024.143373
S. Wang and Z.H. Zhu, J. Colloid Interface Sci., 315, 41 (2007); https://doi.org/10.1016/j.jcis.2007.06.034
R. Khakpour and H. Tahermansouri, Int. J. Biol. Macromol., 109, 598 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.105
A. Munwana and L.E. Macevele, Dig. J. Nanomater. Biostruct., 20, 227 (2025); https://doi.org/10.15251/DJNB.2025.201.227
M. Nazaripour, M.A.M. Reshadi, S.A. Mirbagheri, M. Nazaripour and A. Bazargan, J. Environ. Manage., 287, 112322 (2021); https://doi.org/10.1016/j.jenvman.2021.112322
M. Keshvardoostchokami, M. Majidi, A. Zamani and B. Liu, Carbohydr. Polym., 273, 118625 (2021); https://doi.org/10.1016/j.carbpol.2021.118625
M.A. Kaczorowska and D. Bożejewicz, Sustainability, 16, 2615 (2024); https://doi.org/10.3390/su16072615
K.A. Omran, M.R. El-Aassar, O.M. Ibrahim, S.A. Sharaewy, R.E. Khalifa and F.M. Mohamed, Desalination Water Treat., 317, 100294 (2024); https://doi.org/10.1016/j.dwt.2024.100294
M.S. Rostami and M.M. Khodaei, Int. J. Biol. Macromol., 270, 132386 (2024); https://doi.org/10.1016/j.ijbiomac.2024.132386
M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, K.B. Tan, M.H. Ibrahim, Z. Gholami and P. Amouzgar, Carbohydr. Polym., 113, 115 (2014); https://doi.org/10.1016/j.carbpol.2014.07.007
K. Mohan, D. Karthick Rajan, J. Rajarajeswaran, D. Divya and A. Ramu Ganesan, Curr. Opin. Environ. Sci. Health, 33, 100473 (2023); https://doi.org/10.1016/j.coesh.2023.100473
J. Jin, H. Zhang, A.A. Aryee, Y. Wang, R. safdar, W. Shi, L. Qu and R. Han, Int. J. Biol. Macromol., 320, 144779 (2025); https://doi.org/10.1016/j.ijbiomac.2025.144779
S.S. Elanchezhiyan, N. Sivasurian and S. Meenakshi, Carbohydr. Polym., 145, 103 (2016); https://doi.org/10.1016/j.carbpol.2016.02.038
S. Sonal and B.K. Mishra, Chem. Eng. J., 424, 130509 (2021); https://doi.org/10.1016/j.cej.2021.130509
R.S. Das, S.K. Warkhade, A. Kumar and A.V. Wankhade, Res. Chem. Intermed., 45, 1689 (2019); https://doi.org/10.1007/s11164-018-3699-z
A. Khazaie, H. Kia, E. Moniri, A.H. Hassani and M. Miralinaghi, J. Taiwan Inst. Chem. Eng., 144, 104743 (2023); https://doi.org/10.1016/j.jtice.2023.104743
L.P.L. Gonçalves, M. Meledina, A. Meledin, D.Y. Petrovykh, J.P.S. Sousa, O.S.G.P. Soares, Y.V. Kolen’ko and M.F.R. Pereira, Carbon, 195, 35 (2022); https://doi.org/10.1016/j.carbon.2022.03.059
K. Azlan, W.N. Wan Saime and L. Lai Ken, J. Environ. Sci. (China), 21, 296 (2009); https://doi.org/10.1016/S1001-0742(08)62267-6
M. Khodakarami and R. Honaker, J. Hazard. Mater. Adv., 912, 169519 (2024); https://doi.org/10.1016/j.scitotenv.2023.169519
L.L. Borba, R.M.F. Cuba, F.J. Cuba Terán, M.N. Castro and T.A. Mendes, Brazilian Arch. Biol. Technol., 62, (2019); https://doi.org/10.1590/1678-4324-2019180450
N. Sun, Y. Zhang, L. Ma, S. Yu and J. Li, J. Taiwan Inst. Chem. Eng., 78, 96 (2017); https://doi.org/10.1016/j.jtice.2017.03.017
N.F. Shoparwe, L.C. Kee, T.A. Otitoju, H. Shukor, N. Zainuddin and M.M.Z. Makhtar, Membranes (Basel), 11, 721 (2021); https://doi.org/10.3390/membranes11090721
L.E. Macevele, K.L.M. Moganedi and T. Magadzu, J. Compos. Sci., 8, 119 (2024); https://doi.org/10.3390/jcs8040119
N.B. Mkhondo and T. Magadzu, Dig. J. Nanomater. Biostruct., 9, 1331 (2014).
M. Kosmulski, Adv. Colloid Interface Sci., 319, 102973 (2023); https://doi.org/10.1016/j.cis.2023.102973
N.V. Perez-Aguilar, E. Muñoz-Sandoval, P.E. Diaz-Flores and J.R. Rangel-Mendez, J. Nanopart. Res., 12, 467 (2010); https://doi.org/10.1007/s11051-009-9670-6
T. Zhou, S. Huang, D. Niu, L. Su, G. Zhen and Y. Zhao, ACS Sustain. Chem.& Eng., 6, 5981 (2018); https://doi.org/10.1021/acssuschemeng.7b04507
A.A.M. Daifullah, B.S. Girgis and H.M.H. Gad, Colloids Surf. A Physicochem. Eng. Asp., 235, 1 (2004); https://doi.org/10.1016/j.colsurfa.2003.12.020
R. Kecili, C.M. Hussain, Elsevier Inc., (2018); https://doi.org/10.1016/B978-0-12-812792-6.00004-2
N. Hilmioglu and E. Yumat, Water Air Soil Pollut., 235, 293 (2024); https://doi.org/10.1007/s11270-024-07044-1
A.K. Tolkou, I.A. Katsoyiannis and G.Z. Kyzas, J. Compos. Sci., 9, 327 (2025); https://doi.org/10.3390/jcs9070327
M. Wang, L. Liao, X. Zhang and Z. Li, Appl. Clay Sci., 67–68, 164 (2012); https://doi.org/10.1016/j.clay.2011.09.012
S. Deng and R. Bai, J. Colloid Interface Sci., 280, 36 (2004); https://doi.org/10.1016/j.jcis.2004.07.007
G. Moussavi, S. Talebi, M. Farrokhi and R.M. Sabouti, Chem. Eng. J., 171, 1159 (2011); https://doi.org/10.1016/j.cej.2011.05.016
C. Zhang, J. Sui, J. Li, Y. Tang and W. Cai, Chem. Eng. J., 210, 45 (2012); https://doi.org/10.1016/j.cej.2012.08.062
L.E. Macevele, K. Lydia, M. Moganedi, T. Magadzu, J. membr. sci. res., 7, 152 (2021); https://doi.org/10.22079/JMSR.2020.121858.1351
M.A. Islam, D.W. Morton, B.B. Johnson and M.J. Angove, Separ. Purif. Tech., 247, 116949 (2020); https://doi.org/10.1016/j.seppur.2020.116949
G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès and M. Krimissa, Appl. Geochem., 22, 249 (2007); https://doi.org/10.1016/j.apgeochem.2006.09.010
X. Hu and Z. Cheng, Chin. J. Chem. Eng., 23, 1551 (2015); https://doi.org/10.1016/j.cjche.2015.06.010
X. Wei, Y. Shi, Y. Fei, J. Chen, B. Lv, Y. Chen, H. Zheng, J. Shen and L. Zhu, Chem. Eng. J., 292, 382 (2016); https://doi.org/10.1016/j.cej.2016.02.037
L. Sellaoui, F.E. Soetaredjo, N. Sghaier, A. Erto, T. Saidani, N. Alwadai, M. Badawi, G.L. Dotto and S. Ismadji, Appl. Clay Sci., 276, 107922 (2025); https://doi.org/10.1016/j.clay.2025.107922