Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antibacterial Activity of Tannic Acid and Tannic Acid/Amphiphilic Cationic Polymer Mixtures
Corresponding Author(s) : Fatimah M. Alzahrani
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
In this study, the antibacterial activity of tannic acid/amphiphilic cationic polymer (poly{2-[(methacryloyloxy)ethyl]trimethyl-ammonium chloride}, PMADQUAT) and tannic acid mixtures was examined on the strains of Gram-positive (S. aureus) and Gram-negative (E. coli CI2, E. coli K12, Klebsiella pneumonia and P. aeruginosa) bacteria. Tannic acid exhibited the antibacterial activity against all the studied bacterial strains. The ester linkage between glucose and gallic acid is vital for the antimicrobial activity of tannic acid. Tannic acid inhibited the growth of S. aureus and E. coli K12 (1 wt%) and reduced the growth of P. aeruginosa to 23%. Mixing cationic polymers having different structures (statistical copolymer, homopolymer and diblock polymer) with tannic acid lead to an increase in antibacterial activity of tannic acid and the stability and clarity of mixtures was higher than that of a pure tannic acid solution. Tannic acid/diblock polymer and tannic acid/homopolymer mixtures (0.1 wt%) were excellent for inhibiting the growth of planktonic E. coli K12 bacteria, and a low concentration (0.0001 wt%) of tannic acid/diblock polymer reduced its growth to 19%. By contrast, the tannic acid/statistical polymer mixture (0.0001 wt%) was excellent for inhibiting the growth of Gram-positive S. aureus bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Serrano, R. Puupponen-Pimia, A. Dauer, A.-M. Aura and F. SauraCalixto, Mol. Nutr. Food Res., 53(S2), S310 (2009); https://doi.org/10.1002/mnfr.200900039
- R. Osawa and T.P. Walsh, J. Agric. Food Chem., 41, 704 (1993); https://doi.org/10.1021/jf00029a004
- C.D. Wuyuan, C.Y. Chen and R.T. Wu, J. Dent. Res., 67, 51 (1988); https://doi.org/10.1177/00220345880670011001
- K.T. Chung, W.R. Thomasson and C.D. Wuyuan, J. Appl. Bacteriol., 69, 498 (1990); https://doi.org/10.1111/j.1365-2672.1990.tb01541.x
- A. Scalbert, Phytochemistry, 30, 3875 (1991); https://doi.org/10.1016/0031-9422(91)83426-L
- J.G. Handique and J.B. Baruah, React. Funct. Polym., 52, 163 (2002); https://doi.org/10.1016/S1381-5148(02)00091-3
- T.D. Bruyne, L. Pieters, H. Deelstra and A. Vlietinck, Biochem. Syst. Ecol., 27, 445 (1999); https://doi.org/10.1016/S0305-1978(98)00101-X
- A.E. Sobota, J. Urol., 131, 1013 (1984); https://doi.org/10.1016/S0022-5347(17)50751-X
- I. Ofek, J. Goldhar, D. Zafriri, H. Lis, R. Adar and N. Sharon, N. Engl. J. Med., 324, 1599 (1991).
- E.H. Beachey, J. Infect. Dis., 143, 325 (1981); https://doi.org/10.1093/infdis/143.3.325
- A.B. Howell, J.D. Reed, C.G. Krueger, R. Winterbottom, D.G. Cunningham and M. Leahy, Phytochemistry, 66, 2281 (2005); https://doi.org/10.1016/j.phytochem.2005.05.022
- K. Fukuchi, H. Sakagami, T. Okuda, T. Hatano, S. Tanuma, K. Kitajima, Y. Inoue, S. Inoue, S. Ichikawa, M. Nonoyama and K. Konno, Antiviral Res., 11, 285 (1989); https://doi.org/10.1016/0166-3542(89)90038-7
- R. Ubillas, S.D. Jolad, R.C. Bruening, M.R. Kernan, S.R. King, D.F. Sesin, M. Barrett, C.A. Stoddart, T. Flaster, J. Kuo, F. Ayala, E. Meza, M. Castañel, D. Mcmeekin, E. Rozhon, M.S. Tempesta, D. Barnard, J. Huffman, D. Smee, R. Sidwell, K. Soike, A. Brazier, S. Safrin, R. Orlando, P.T.M. Kenny, N. Berova and K. Nakanishi, Phytomedicine, 1, 77 (1994); https://doi.org/10.1016/S0944-7113(11)80026-7
- A.R. Patel, J. Seijen-ten-Hoorn and K.P. Velikov, J. Colloid Interface Sci., 364, 317 (2011); https://doi.org/10.1016/j.jcis.2011.08.054
- A.R. Patel, J. Nijsse and K.P. Velikov, Soft Matter, 7, 4294 (2011); https://doi.org/10.1039/c1sm05135k
- T.N. Barry and T.R. Manley, J. Sci. Food Agric., 37, 248 (1986); https://doi.org/10.1002/jsfa.2740370309
- J.L. Glenn, C.C. Kuo, R.C. Durley and R.P. Pharis, Phytochemistry, 11, 345 (1972); https://doi.org/10.1016/S0031-9422(00)90013-X
- A.R. Patel, J.S. ten-Hoorn, J. Hazekamp, T.B.J. Blijdenstein and K.P. Velikov, Soft Matter, 9, 11710 (2013).
- B.S. Kim, H. Lee, Y.H. Min, Z. Poon and P.T. Hammond, Chem. Commun., 4194 (2009); https://doi.org/10.1039/b908688a
- T. Shutava, M. Prouty, D. Kommireddy and Y. Lvov, Macromolecules, 38, 2850 (2005); https://doi.org/10.1021/ma047629x
- N. Govindji, P. Wills, M. Upton, N. Tirelli, S. Yeates and M. Webb, J. Appl. Microbiol., 114, 1285 (2013); https://doi.org/10.1111/jam.12162
- J.M. Andrews, J. Antimicrob. Chemother., 48(suppl.1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5
- M. Ocwieja, Z. Adamczyk and M. Morga, J. Colloid Interface Sci., 438, 249 (2015); https://doi.org/10.1016/j.jcis.2014.09.071
- K.-T. Chung, S.E.S. Jr, W.-F. Lin and C.I. Wei, Lett. Appl. Microbiol., 17, 29 (1993); https://doi.org/10.1111/j.1472-765X.1993.tb01428.x
- P. Gilbert and L.E. Moore, J. Appl. Microbiol., 99, 703 (2005); https://doi.org/10.1111/j.1365-2672.2005.02664.x
- S.Y. Kim, H.S. Lee, J.J. Hyun, M.H. Seo, S.Y. Yim, H.Y. Oh, H.S. Kim, B. Keum, Y.S. Seo, Y.S. Kim, Y.T. Jeen, H.J. Chun, S.H. Um, C.D. Kim and H.S. Ryu, Clin. Endosc., 44, 109 (2011); https://doi.org/10.5946/ce.2011.44.2.109
- E. Drenkard, Microbes Infect., 5, 1213 (2003); https://doi.org/10.1016/j.micinf.2003.08.009
- D.J. Trott, S.M. Moss, A.M. See and R. Rees, Aust. Vet. J., 85, 464 (2007); https://doi.org/10.1111/j.1751-0813.2007.00223.x
- H. Akiyama, K. Fujii, O. Yamasaki, T. Oono and K. Iwatsuki, J. Antimicrob. Chemother., 48, 487 (2001); https://doi.org/10.1093/jac/48.4.487
- A.M. Carmona-Ribeiro and L.D. de Melo Carrasco, Int. J. Mol. Sci., 14, 9906 (2013); https://doi.org/10.3390/ijms14059906
- K. Kuroda and W.F. DeGrado, J. Am. Chem. Soc., 127, 4128 (2005); https://doi.org/10.1021/ja044205+
References
J. Serrano, R. Puupponen-Pimia, A. Dauer, A.-M. Aura and F. SauraCalixto, Mol. Nutr. Food Res., 53(S2), S310 (2009); https://doi.org/10.1002/mnfr.200900039
R. Osawa and T.P. Walsh, J. Agric. Food Chem., 41, 704 (1993); https://doi.org/10.1021/jf00029a004
C.D. Wuyuan, C.Y. Chen and R.T. Wu, J. Dent. Res., 67, 51 (1988); https://doi.org/10.1177/00220345880670011001
K.T. Chung, W.R. Thomasson and C.D. Wuyuan, J. Appl. Bacteriol., 69, 498 (1990); https://doi.org/10.1111/j.1365-2672.1990.tb01541.x
A. Scalbert, Phytochemistry, 30, 3875 (1991); https://doi.org/10.1016/0031-9422(91)83426-L
J.G. Handique and J.B. Baruah, React. Funct. Polym., 52, 163 (2002); https://doi.org/10.1016/S1381-5148(02)00091-3
T.D. Bruyne, L. Pieters, H. Deelstra and A. Vlietinck, Biochem. Syst. Ecol., 27, 445 (1999); https://doi.org/10.1016/S0305-1978(98)00101-X
A.E. Sobota, J. Urol., 131, 1013 (1984); https://doi.org/10.1016/S0022-5347(17)50751-X
I. Ofek, J. Goldhar, D. Zafriri, H. Lis, R. Adar and N. Sharon, N. Engl. J. Med., 324, 1599 (1991).
E.H. Beachey, J. Infect. Dis., 143, 325 (1981); https://doi.org/10.1093/infdis/143.3.325
A.B. Howell, J.D. Reed, C.G. Krueger, R. Winterbottom, D.G. Cunningham and M. Leahy, Phytochemistry, 66, 2281 (2005); https://doi.org/10.1016/j.phytochem.2005.05.022
K. Fukuchi, H. Sakagami, T. Okuda, T. Hatano, S. Tanuma, K. Kitajima, Y. Inoue, S. Inoue, S. Ichikawa, M. Nonoyama and K. Konno, Antiviral Res., 11, 285 (1989); https://doi.org/10.1016/0166-3542(89)90038-7
R. Ubillas, S.D. Jolad, R.C. Bruening, M.R. Kernan, S.R. King, D.F. Sesin, M. Barrett, C.A. Stoddart, T. Flaster, J. Kuo, F. Ayala, E. Meza, M. Castañel, D. Mcmeekin, E. Rozhon, M.S. Tempesta, D. Barnard, J. Huffman, D. Smee, R. Sidwell, K. Soike, A. Brazier, S. Safrin, R. Orlando, P.T.M. Kenny, N. Berova and K. Nakanishi, Phytomedicine, 1, 77 (1994); https://doi.org/10.1016/S0944-7113(11)80026-7
A.R. Patel, J. Seijen-ten-Hoorn and K.P. Velikov, J. Colloid Interface Sci., 364, 317 (2011); https://doi.org/10.1016/j.jcis.2011.08.054
A.R. Patel, J. Nijsse and K.P. Velikov, Soft Matter, 7, 4294 (2011); https://doi.org/10.1039/c1sm05135k
T.N. Barry and T.R. Manley, J. Sci. Food Agric., 37, 248 (1986); https://doi.org/10.1002/jsfa.2740370309
J.L. Glenn, C.C. Kuo, R.C. Durley and R.P. Pharis, Phytochemistry, 11, 345 (1972); https://doi.org/10.1016/S0031-9422(00)90013-X
A.R. Patel, J.S. ten-Hoorn, J. Hazekamp, T.B.J. Blijdenstein and K.P. Velikov, Soft Matter, 9, 11710 (2013).
B.S. Kim, H. Lee, Y.H. Min, Z. Poon and P.T. Hammond, Chem. Commun., 4194 (2009); https://doi.org/10.1039/b908688a
T. Shutava, M. Prouty, D. Kommireddy and Y. Lvov, Macromolecules, 38, 2850 (2005); https://doi.org/10.1021/ma047629x
N. Govindji, P. Wills, M. Upton, N. Tirelli, S. Yeates and M. Webb, J. Appl. Microbiol., 114, 1285 (2013); https://doi.org/10.1111/jam.12162
J.M. Andrews, J. Antimicrob. Chemother., 48(suppl.1), 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5
M. Ocwieja, Z. Adamczyk and M. Morga, J. Colloid Interface Sci., 438, 249 (2015); https://doi.org/10.1016/j.jcis.2014.09.071
K.-T. Chung, S.E.S. Jr, W.-F. Lin and C.I. Wei, Lett. Appl. Microbiol., 17, 29 (1993); https://doi.org/10.1111/j.1472-765X.1993.tb01428.x
P. Gilbert and L.E. Moore, J. Appl. Microbiol., 99, 703 (2005); https://doi.org/10.1111/j.1365-2672.2005.02664.x
S.Y. Kim, H.S. Lee, J.J. Hyun, M.H. Seo, S.Y. Yim, H.Y. Oh, H.S. Kim, B. Keum, Y.S. Seo, Y.S. Kim, Y.T. Jeen, H.J. Chun, S.H. Um, C.D. Kim and H.S. Ryu, Clin. Endosc., 44, 109 (2011); https://doi.org/10.5946/ce.2011.44.2.109
E. Drenkard, Microbes Infect., 5, 1213 (2003); https://doi.org/10.1016/j.micinf.2003.08.009
D.J. Trott, S.M. Moss, A.M. See and R. Rees, Aust. Vet. J., 85, 464 (2007); https://doi.org/10.1111/j.1751-0813.2007.00223.x
H. Akiyama, K. Fujii, O. Yamasaki, T. Oono and K. Iwatsuki, J. Antimicrob. Chemother., 48, 487 (2001); https://doi.org/10.1093/jac/48.4.487
A.M. Carmona-Ribeiro and L.D. de Melo Carrasco, Int. J. Mol. Sci., 14, 9906 (2013); https://doi.org/10.3390/ijms14059906
K. Kuroda and W.F. DeGrado, J. Am. Chem. Soc., 127, 4128 (2005); https://doi.org/10.1021/ja044205+