Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Modifying Shellac with Citric Acid on Shellac-Bagasse Biocomposite
Corresponding Author(s) : Nanik Dwi Nurhayati
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
This study was aimed at modifying local Shellac with citric acid in varied concentrations of 2, 4, 6, 8 and 10 % (w/w) to prepare Shellac-Bagasse (Sh-Bg) biocomposite and determining its physico-chemical properties. The biocomposite was made from the natural Shellac matrices and Bagasse fibers. Physico-chemical properties of non-modified Shellac and Shellac modified with citric acid including functional groups, intrinsic viscosity, density, and mechanical tensile strength were characterized using Fourier transform infrared spectrometer (FTIR), Oswald viscometer and Universal Testing Machine (UTM). The analysis results showed an optimum modification of shellac-citric acid at a concentration of 4% (w/w). FTIR analysis of the modified Shellac showed a broad absorption at 3448 cm–1 which indicated the presence of hydroxyl groups (-OH). The presence of C=O ester groups was indicated by the absorption appearing at 1712 cm–1. The absorption at 1251-1250 cm–1 indicated the presence of C-O groups, while the presence of -CH2 methylene groups was indicated by the absorption at 1465 cm–1. The modified Shellac with its optimal intrinsic viscosity of 169.97 mL/g indicated that there was a reaction between citric acid and Shellac to form an ester, so that the polymer chains formed were longer with a low density of 0,6662-0,8168 mg/L when compared to Shellac without modification. The low density indicated that the citric acid-modified Shellac could be processed to be biocomposite. The biocomposite was made with various compositions of Shellac and Bagasse with hot press at 80 °C and under a pressure of 6 Kgf/cm2. The optimum ratio of Shellac to Bagasse in Shellac-Bagasse (Sh-Bg) biocomposite was of 60:40 %. While, the analysis using Universal testing machine resulted a mechanical tensile strength of 0.6 MPa and an elongation at break of 0.45 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.G. Thyavihalli Girijappa, S.M. Rangappa, J. Parameswaranpillai and S. Siengchin, Front. Mater., 6, 226 (2019); https://doi.org/10.3389/fmats.2019.00226.
- P. Peças, H. Carvalho, H. Salman and M. Leite, J. Compos. Sci., 2, 66 (2018); https://doi.org/10.3390/jcs2040066.
- R.A. Khan, M.A. Khan, H.U. Zaman, S. Pervin, N. Khan, S. Sultana, M. Saha and A.I. Mustafa, J. Reinf. Plast. Compos., 29, 1078 (2010); https://doi.org/10.1177/0731684409103148.
- H. Lu, X. Wang, T. Zhang, Z. Cheng and Q. Fang, Materials, 2, 958 (2009); https://doi.org/10.3390/ma2030958.
- M. Haque, S. Islam, S. Islam, N. Islam, M. Huque and M. Hasan, J. Reinf. Plast. Compos., 29, 1734 (2010); https://doi.org/10.1177/0731684409341678.
- N. Moncif, E.L.H. Gourri, A.B.A. Elouahli, M. Ezzahmouly, K. Nayme, M. Timinouni and Z. Hatim, Orient. J. Chem., 34, 1765 (2018); https://doi.org/10.13005/ojc/340408.
- M. Luangtana-anan, J. Nunthanid and S. Limmatvapirat, J. Agric. Food Chem., 58, 12934 (2010); https://doi.org/10.1021/jf1031026.
- M. Kumpugdee-Vollrath, J.P. Krause and S. Burk, Int. J. Pharmacol. Pharm. Sci., 8, 21 (2014).
- D. Panchapornpon, C. Limmatvapirat, M. Luangtana-anan, J. Nunthanid, P. Sriamornsak and S. Limmatvapirat, J. Mater. Lett., 65, 1241 (2011); https://doi.org/10.1016/j.matlet.2011.01.068.
- T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan and B. Yogesha, Cogent Eng., 5, Article: 1446667 (2018); https://doi.org/10.1080/23311916.2018.1446667.
- S. Soradech, J. Nunthanid, S. Limmatvapirat and M. Luangtana-anan, J. Food Eng., 108, 94 (2012); https://doi.org/10.1016/j.jfoodeng.2011.07.019.
- C. Coelho, R. Nanabala, M. Ménager, S. Commereuc and V. Verney, J. Polym. Deg. Stab., 97, 936 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.03.024.
- S. Sharma Structure, Characteristic and Modification Shellac, Defence Science Centre, Metcalfe House: Delhi, vol. 33, p. 261 (2010).
- B. Saberi, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett and C.E. Stathopoulos, J. Food Hydrol., 72, 174 (2017); https://doi.org/10.1016/j.foodhyd.2017.05.042.
- X. Wei, J. Pang, C. Zhang, C. Yu, H. Chen and B. Xie, J. Carbohydr. Polym., 118, 119 (2015); https://doi.org/10.1016/j.carbpol.2014.11.009.
- Y. Farag and C.S. Leopold, Eur. J. Pharm. Sci., 42, 400 (2011); https://doi.org/10.1016/j.ejps.2011.01.006.
- N. Chinatangkul, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan, P. Sriamornsak and S. Limmatvapirat, Asian J. Pharm. Sci., 13, 459 (2018); https://doi.org/10.1016/j.ajps.2017.12.006.
- J. Obradovic, F. Petibon and P. Fardim, BioResource, 12, 1943 (2017); https://doi.org/10.15376/biores.12.1.1943-1959.
- J. Jamasri, B.R. Heru Santoso and J.P. Gentur Sutapa, J. Mater. Sci. Res. India, 7, 37 (2010); https://doi.org/10.13005/msri/070104.
- L. Zhang, J. Zhong and X. Ren, eds.: M. Jawaid, S. Sapuan and O. Alothman, Natural Fiber-Based Biocomposites, In: Green Biocomposites, Springer: Cham (2017).
- A. Geetha, R. Sakthivel, J. Mallika, R. Kannusamy and R. Rajendran, Orient. J. Chem., 32, 955 (2016); https://doi.org/10.13005/ojc/320222.
- N.H. Sari, I.N.G. Wardana, Y.S. Irawan and E. Siswanto, Orient. J. Chem., 33, 3037 (2017); https://doi.org/10.13005/ojc/330642.
- S. Silviana, P.B. Brandon and B.A. Silawanda, Indo. J. Chem., 18, 688 (2018); https://doi.org/10.22146/ijc.26766.
- A. Balaji, B. Karthikeyan and C.S. Raj, Int. J. ChemTech Res., 7, 223 (2014-2015).
- M. Aslani, M. Meskinfam and H.R. Aghabozorg, Orient. J. Chem., 33, 235 (2017); https://doi.org/10.13005/ojc/330127.
- W. Xiong, J. Thermoplast. Compos. Mater., 31, 1112 (2018); https://doi.org/10.1177/0892705717734596.
- American Society for Testing and Material, Annual Book of ASTM Standards, Philadelphia, vol. 6, p. 230 (1989).
References
Y.G. Thyavihalli Girijappa, S.M. Rangappa, J. Parameswaranpillai and S. Siengchin, Front. Mater., 6, 226 (2019); https://doi.org/10.3389/fmats.2019.00226.
P. Peças, H. Carvalho, H. Salman and M. Leite, J. Compos. Sci., 2, 66 (2018); https://doi.org/10.3390/jcs2040066.
R.A. Khan, M.A. Khan, H.U. Zaman, S. Pervin, N. Khan, S. Sultana, M. Saha and A.I. Mustafa, J. Reinf. Plast. Compos., 29, 1078 (2010); https://doi.org/10.1177/0731684409103148.
H. Lu, X. Wang, T. Zhang, Z. Cheng and Q. Fang, Materials, 2, 958 (2009); https://doi.org/10.3390/ma2030958.
M. Haque, S. Islam, S. Islam, N. Islam, M. Huque and M. Hasan, J. Reinf. Plast. Compos., 29, 1734 (2010); https://doi.org/10.1177/0731684409341678.
N. Moncif, E.L.H. Gourri, A.B.A. Elouahli, M. Ezzahmouly, K. Nayme, M. Timinouni and Z. Hatim, Orient. J. Chem., 34, 1765 (2018); https://doi.org/10.13005/ojc/340408.
M. Luangtana-anan, J. Nunthanid and S. Limmatvapirat, J. Agric. Food Chem., 58, 12934 (2010); https://doi.org/10.1021/jf1031026.
M. Kumpugdee-Vollrath, J.P. Krause and S. Burk, Int. J. Pharmacol. Pharm. Sci., 8, 21 (2014).
D. Panchapornpon, C. Limmatvapirat, M. Luangtana-anan, J. Nunthanid, P. Sriamornsak and S. Limmatvapirat, J. Mater. Lett., 65, 1241 (2011); https://doi.org/10.1016/j.matlet.2011.01.068.
T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan and B. Yogesha, Cogent Eng., 5, Article: 1446667 (2018); https://doi.org/10.1080/23311916.2018.1446667.
S. Soradech, J. Nunthanid, S. Limmatvapirat and M. Luangtana-anan, J. Food Eng., 108, 94 (2012); https://doi.org/10.1016/j.jfoodeng.2011.07.019.
C. Coelho, R. Nanabala, M. Ménager, S. Commereuc and V. Verney, J. Polym. Deg. Stab., 97, 936 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.03.024.
S. Sharma Structure, Characteristic and Modification Shellac, Defence Science Centre, Metcalfe House: Delhi, vol. 33, p. 261 (2010).
B. Saberi, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett and C.E. Stathopoulos, J. Food Hydrol., 72, 174 (2017); https://doi.org/10.1016/j.foodhyd.2017.05.042.
X. Wei, J. Pang, C. Zhang, C. Yu, H. Chen and B. Xie, J. Carbohydr. Polym., 118, 119 (2015); https://doi.org/10.1016/j.carbpol.2014.11.009.
Y. Farag and C.S. Leopold, Eur. J. Pharm. Sci., 42, 400 (2011); https://doi.org/10.1016/j.ejps.2011.01.006.
N. Chinatangkul, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan, P. Sriamornsak and S. Limmatvapirat, Asian J. Pharm. Sci., 13, 459 (2018); https://doi.org/10.1016/j.ajps.2017.12.006.
J. Obradovic, F. Petibon and P. Fardim, BioResource, 12, 1943 (2017); https://doi.org/10.15376/biores.12.1.1943-1959.
J. Jamasri, B.R. Heru Santoso and J.P. Gentur Sutapa, J. Mater. Sci. Res. India, 7, 37 (2010); https://doi.org/10.13005/msri/070104.
L. Zhang, J. Zhong and X. Ren, eds.: M. Jawaid, S. Sapuan and O. Alothman, Natural Fiber-Based Biocomposites, In: Green Biocomposites, Springer: Cham (2017).
A. Geetha, R. Sakthivel, J. Mallika, R. Kannusamy and R. Rajendran, Orient. J. Chem., 32, 955 (2016); https://doi.org/10.13005/ojc/320222.
N.H. Sari, I.N.G. Wardana, Y.S. Irawan and E. Siswanto, Orient. J. Chem., 33, 3037 (2017); https://doi.org/10.13005/ojc/330642.
S. Silviana, P.B. Brandon and B.A. Silawanda, Indo. J. Chem., 18, 688 (2018); https://doi.org/10.22146/ijc.26766.
A. Balaji, B. Karthikeyan and C.S. Raj, Int. J. ChemTech Res., 7, 223 (2014-2015).
M. Aslani, M. Meskinfam and H.R. Aghabozorg, Orient. J. Chem., 33, 235 (2017); https://doi.org/10.13005/ojc/330127.
W. Xiong, J. Thermoplast. Compos. Mater., 31, 1112 (2018); https://doi.org/10.1177/0892705717734596.
American Society for Testing and Material, Annual Book of ASTM Standards, Philadelphia, vol. 6, p. 230 (1989).