Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth and Characterization of Adipic Acid Doped Potassium Hydrogen Phthalate: A Nonlinear Optical Single Crystal
Corresponding Author(s) : R. Manimekalai
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
Adipic acid doped potassium hydrogen phthalate (AAKHP) and pure potassium hydrogen phthalate single crystals were grown by slow evaporation method. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters in a = 6.47 Å, b = 9.59 Å, c = 13.25 Å and space group of Pca21. This confirms the grown AAKHP belongs to the orthorhombic system. Various diffracting planes of the grown crystal were indexed using powder X-ray diffraction study. Fourier-transform infrared studies confirm the presence of various functional groups in the grown crystal. The transmittance spectrum shows that the lower cutoff wavelength is around 290 nm. The nonlinear optical property of the grown crystal has been studied by Kurtz powder second harmonic generation (SHG) analysis. EDAX analysis confirms the presence of various elements in the AAKHP crystal. Vickers micro-hardness studies are used for the analysis of mechanical behaviour of the grown crystal. The paramagnetic nature of the grown crystal was confirmed by vibration spectrum magnetometer technique.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Haussuhl, Z. Kristallogr., 196, 47 (1991); https://doi.org/10.1524/zkri.1991.196.1-4.47.
- N. Indumathi, P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, IOP Conf. Series Mater. Sci. Eng., 360, 012032 (2018); https://doi.org/10.1088/1757-899X/360/1/012032.
- N.E. Novikova, N.I. Sorokina, I.A. Verin, O.A. Alekseeva, E.I. Orlova, V.I. Voronkova and M. Tseitlin, Crystals, 8, 283 ( 2018); https://doi.org/10.3390/cryst8070283.
- N. Balamurugan, M. Lenin and P. Ramasamy, Mater. Lett., 61, 1896 (2007); https://doi.org/10.1016/j.matlet.2006.07.184.
- S.S. Dhavud and J.T.J. Prakash, Int. J. Adv. Res., 5, 1542 (2017); https://doi.org/10.21474/IJAR01/4868.
- L.M. Belyaev, G.S. Belikova, A.B. Gil’varg and I.M. Sil’vestrova, Sov. Phys. Crystallogr., 14, 544 (1970).
- Y. Okaya, Acta Crystallogr., 19, 879 (1965); https://doi.org/10.1107/S0365110X65004590.
- S.R. Thilagavathey, P. Rajesh, P. Ramasamy and K. Ambujam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 122, 1389 (2014).
- J. George and S.K. Premachandran, J. Phys. D, 14, 1277 (1981); https://doi.org/10.1088/0022-3727/14/7/015.
- A. Lesbani, Fitriliana and R. Mohad, Indo. J. Chem., 15, 64 (2015); https://doi.org/10.22146/ijc.21225.
- S. Suren, N. Sunsandee, M. Stolcva, M. Hronec, N. Leepipatpiboon, U. Pancharoen and S. Kheawhom, Fluid Phase Equilib., 360, 332 (2013); https://doi.org/10.1016/j.fluid.2013.10.003.
- A. Shanthi, C. Krishnan and P. Selvarajan, Spectrochim. Acta A Mol. Bimol. Spectrosc., 122, 521 (2014); https://doi.org/10.1016/j.saa.2013.11.067.
- M.H.J. Hottenhuis, J.G.E. Gardeniers, L.A.M.J. Jetten and P. Bennema, J. Cryst. Growth, 92, 171 (1988); https://doi.org/10.1016/0022-0248(88)90448-4.
- J.R.G. Sander, D.-K. Bucar, R.F. Henry, B.N. Giangiorgi, G.G.Z. Zhang and L.R. MacGillivray, CrystEngComm, 15, 4815 (2013); https://doi.org/10.1039/C3CE40159F.
- M. Suzuki and T. Shimanouchi, J. Mol. Spectrosc., 29, 415 (1969); https://doi.org/10.1016/0022-2852(69)90118-0.
- K.B.R. Varma, A.R. Raju and K.J. Rao, Cryst. Res. Technol., 23, 185 (1988); https://doi.org/10.1002/crat.2170230210.
- G.B. Rao, P. Rajesh and P. Ramasamy, Mater. Res. Bull., 60, 709 (2014); https://doi.org/10.1016/j.materresbull.2014.09.063.
- S. Sudhahar, M.K. Kumar, V. Jayaramakrishnan, R. Muralidharan and R.M. Kumar, J. Mater. Sci. Technol., 30, 13 (2014); https://doi.org/10.1016/j.jmst.2013.08.017.
- A.C. Sajikumar, S. Vinu and C. Krishnan, Res. Art., 5, 50 (2015).
- A.C. Sajikumar, Int. J. Phys. Appl., 8, 53 (2013).
- P. Rajesh and P. Ramasamy, Opt. Mater., 42, 87 (2015); https://doi.org/10.1016/j.optmat.2014.12.024.
- M. Ajitha Sweetly and T. Chithambarathanu, Int. J. Res. Eng. Technol., 2319 (2014).
- R. Manimekalai, R. Punniyamoorthy, R. Manimekalai and G. Pasupathi, Int. J. Sci. Res. Phys. Appl. Sci., 6, 41 (2018); https://doi.org/10.26438/ijsrpas/v6i5.4147.
- R. Punniyamoorthy, R. Suganthi, R. Manimekalai and G. Pasupathi, Asian J. Chem., 30, 2731 (2018); https://doi.org/10.14233/ajchem.2018.21572.
- S. Chidambaram, A.D. Kalaimani Raj and R. Manimekalai, Mater. Chem. Phys., 229, 149 (2019); https://doi.org/10.1016/j.matchemphys.2019.02.092
References
S. Haussuhl, Z. Kristallogr., 196, 47 (1991); https://doi.org/10.1524/zkri.1991.196.1-4.47.
N. Indumathi, P. Sanjay, K. Deepa, J. Madhavan and S. Senthil, IOP Conf. Series Mater. Sci. Eng., 360, 012032 (2018); https://doi.org/10.1088/1757-899X/360/1/012032.
N.E. Novikova, N.I. Sorokina, I.A. Verin, O.A. Alekseeva, E.I. Orlova, V.I. Voronkova and M. Tseitlin, Crystals, 8, 283 ( 2018); https://doi.org/10.3390/cryst8070283.
N. Balamurugan, M. Lenin and P. Ramasamy, Mater. Lett., 61, 1896 (2007); https://doi.org/10.1016/j.matlet.2006.07.184.
S.S. Dhavud and J.T.J. Prakash, Int. J. Adv. Res., 5, 1542 (2017); https://doi.org/10.21474/IJAR01/4868.
L.M. Belyaev, G.S. Belikova, A.B. Gil’varg and I.M. Sil’vestrova, Sov. Phys. Crystallogr., 14, 544 (1970).
Y. Okaya, Acta Crystallogr., 19, 879 (1965); https://doi.org/10.1107/S0365110X65004590.
S.R. Thilagavathey, P. Rajesh, P. Ramasamy and K. Ambujam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 122, 1389 (2014).
J. George and S.K. Premachandran, J. Phys. D, 14, 1277 (1981); https://doi.org/10.1088/0022-3727/14/7/015.
A. Lesbani, Fitriliana and R. Mohad, Indo. J. Chem., 15, 64 (2015); https://doi.org/10.22146/ijc.21225.
S. Suren, N. Sunsandee, M. Stolcva, M. Hronec, N. Leepipatpiboon, U. Pancharoen and S. Kheawhom, Fluid Phase Equilib., 360, 332 (2013); https://doi.org/10.1016/j.fluid.2013.10.003.
A. Shanthi, C. Krishnan and P. Selvarajan, Spectrochim. Acta A Mol. Bimol. Spectrosc., 122, 521 (2014); https://doi.org/10.1016/j.saa.2013.11.067.
M.H.J. Hottenhuis, J.G.E. Gardeniers, L.A.M.J. Jetten and P. Bennema, J. Cryst. Growth, 92, 171 (1988); https://doi.org/10.1016/0022-0248(88)90448-4.
J.R.G. Sander, D.-K. Bucar, R.F. Henry, B.N. Giangiorgi, G.G.Z. Zhang and L.R. MacGillivray, CrystEngComm, 15, 4815 (2013); https://doi.org/10.1039/C3CE40159F.
M. Suzuki and T. Shimanouchi, J. Mol. Spectrosc., 29, 415 (1969); https://doi.org/10.1016/0022-2852(69)90118-0.
K.B.R. Varma, A.R. Raju and K.J. Rao, Cryst. Res. Technol., 23, 185 (1988); https://doi.org/10.1002/crat.2170230210.
G.B. Rao, P. Rajesh and P. Ramasamy, Mater. Res. Bull., 60, 709 (2014); https://doi.org/10.1016/j.materresbull.2014.09.063.
S. Sudhahar, M.K. Kumar, V. Jayaramakrishnan, R. Muralidharan and R.M. Kumar, J. Mater. Sci. Technol., 30, 13 (2014); https://doi.org/10.1016/j.jmst.2013.08.017.
A.C. Sajikumar, S. Vinu and C. Krishnan, Res. Art., 5, 50 (2015).
A.C. Sajikumar, Int. J. Phys. Appl., 8, 53 (2013).
P. Rajesh and P. Ramasamy, Opt. Mater., 42, 87 (2015); https://doi.org/10.1016/j.optmat.2014.12.024.
M. Ajitha Sweetly and T. Chithambarathanu, Int. J. Res. Eng. Technol., 2319 (2014).
R. Manimekalai, R. Punniyamoorthy, R. Manimekalai and G. Pasupathi, Int. J. Sci. Res. Phys. Appl. Sci., 6, 41 (2018); https://doi.org/10.26438/ijsrpas/v6i5.4147.
R. Punniyamoorthy, R. Suganthi, R. Manimekalai and G. Pasupathi, Asian J. Chem., 30, 2731 (2018); https://doi.org/10.14233/ajchem.2018.21572.
S. Chidambaram, A.D. Kalaimani Raj and R. Manimekalai, Mater. Chem. Phys., 229, 149 (2019); https://doi.org/10.1016/j.matchemphys.2019.02.092