Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Thermal, Electrical and Dielectric Properties of La1-xSrxMn0.50Fe0.50O3 {0.10 ≤ x ≤ 0.40} Cathode Material for Solid Oxide Fuel Cells
Corresponding Author(s) : Manokamna
Asian Journal of Chemistry,
Vol. 32 No. 12 (2020): Vol 32 Issue 12, 2020
Abstract
La1-xSrxMn0.50Fe0.50O3 {0.10 ≤ x ≤ 0.40} perovskite ceramics material is prepared by solid-state reaction method and samples are characterized to study their structural, thermal, electrical and dielectric properties. X-ray diffraction results show that as prepared samples are well crystallized in single phase and have rhombohedral crystal structure. Density is measured by Archimedes principle and with Sr substitution its value decreasing. Thermogravimetric analysis shows the weight gain in the material above 300 ºC. Thermal expansion coefficient value for x = 0.10 and 0.40 composition is found to be 12.9 × 10-6 ºC−1 and 11.3 × 10-6 ºC−1, respectively upto 800 ºC. Impedance analyzer is used to study dielectric and electrical properties which show that all the as prepared samples obey non-Debye relaxation behaviour. The maximum conductivity value is 121.09 S cm-1 for x = 0.10 and 155.96 S cm-1 for x = 0.40 at 600 ºC and 303.59 S cm-1 for x = 0.10 and 362.35 S cm-1 for x = 0.40 at 800 ºC which confirmed that in the experimental perovskite the conductivity increases after Sr doping. Activation energy also found to be decreases with Sr substitution. Therefore, studied properties confirmed that the as-prepared material is a suitable cathode material for intermediate temperature solid oxide fuel cells (SOFCs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.E. O’Brien, C.M. Stoots, J.S. Herring and J. Hartvigsen, J. Fuel Cell Sci. Technol., 3, 213 (2006); https://doi.org/10.1115/1.2179435
- A. Hauch, S.H. Jensen, S. Ramousse and M. Mogensen, J. Electrochem. Soc., 153, A1741 (2006); https://doi.org/10.1149/1.2216562
- R. Rivera-Tinoco, C. Mansilla and C. Bouallou, Energy Convers. Manage., 51, 2623 (2010); https://doi.org/10.1016/j.enconman.2010.05.028
- C. Sun, R. Hui and J. Roller, J. Solid State Electrochem., 14, 1125 (2010); https://doi.org/10.1007/s10008-009-0932-0
- C.W. Sun and U. Stimming, J. Power Sources, 171, 247 (2007); https://doi.org/10.1016/j.jpowsour.2007.06.086
- S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier: Oxford, pp 1-22 (2003).
- M. Mogensen and K. Kammer, Annu. Rev. Mater. Res., 33, 321 (2003); https://doi.org/10.1146/annurev.matsci.33.022802.092713
- S.C. Singhal, Solid State Ion., 135, 305 (2000); https://doi.org/10.1016/S0167-2738(00)00452-5
- M. Dokiya, Solid State Ion., 152-153, 383 (2002); https://doi.org/10.1016/S0167-2738(02)00345-4
- N.P. Brandon, S. Skinner and B.C.H. Steele, Annu. Rev. Mater. Res., 33, 183 (2003); https://doi.org/10.1146/annurev.matsci.33.022802.094122
- K. Wincewicz and J. Cooper, J. Power Sources, 140, 280 (2005); https://doi.org/10.1016/j.jpowsour.2004.08.032
- P. Plonczak, M. Gazda, B. Kusz and P. Jasinski, J. Power Sources, 181, 1 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.019
- J.M. Ralph, A.C. Schoeler and M. Krumpelt, J. Mater. Sci., 36, 1161 (2001); https://doi.org/10.1023/A:1004881825710
- N.A. Baharuddin, A. Muchtar and M.R. Somalu, Int. J. Hydrogen Energy, 42, 9149 (2017); https://doi.org/10.1016/j.ijhydene.2016.04.097
- J.M. Ralph, C. Rossignol and R.J. Kumar, Electrochem Soc., 150, A1518 (2003); https://doi.org/10.1149/1.1617300
- S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, V.L. Sprenkle and J.W. Stevenson, Electrochem. Solid-State Lett., 5, A173 (2002); https://doi.org/10.1149/1.1483156
- S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, J.P. Shelton, V.L. Sprenkle and J.W. Stevenson, J. Power Sources, 113, 1 (2003); https://doi.org/10.1016/S0378-7753(02)00455-X
- G.L. Yuan, S.W. Or and H.L.W. Chan, J. Phys. D Appl. Phys., 40, 1196 (2007); https://doi.org/10.1088/0022-3727/40/4/043
- K.J. Park, C.H. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim and K.H. Hur, J. Eur. Ceram. Soc., 29, 1735 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.10.021
- J. Richter, P. Holtappels, T. Graule and L. Gauckler, Solid State Ion., 179, 2284 (2008); https://doi.org/10.1016/j.ssi.2008.08.007
- F. Chen, O.T. Sorensen, G. Meng and D. Peng, J. Mater. Chem., 7, 481 (1997); https://doi.org/10.1039/a605377g
- A. Weber and E. Ivers-Tiffee, J. Power Sources, 127, 273 (2004); https://doi.org/10.1016/j.jpowsour.2003.09.024
- W.X. Chen, T.L. Wen, H.W. Nie and R. Zheng, Mater. Res. Bull., 38, 1319 (2003); https://doi.org/10.1016/S0025-5408(03)00143-0
- D. Bahadur, W. Fischer and M.V. Rane, Mater. Sci. Eng. A, 252, 109 (1998); https://doi.org/10.1016/S0921-5093(98)00653-4
- K.S. Cole and H. Robert, J. Chem. Phys., 9, 341 (1941); https://doi.org/10.1063/1.1750906
- M. Kumar and K.L. Yadav, J. Phys. Condens. Matter, 91, 242901 (2007); https://doi.org/10.1063/1.2816118
- J.L. García-Muñoz, C. Frontera, M.A.G. Aranda, A. Llobet and C. Ritter, Phys. Rev. B Condens. Matter, 63, 064415 (2001); https://doi.org/10.1103/PhysRevB.63.064415
- M.P. Gutierrez, J. Mira and J. Rivas, Phys. Lett. A, 323, 473 (2004); https://doi.org/10.1016/j.physleta.2004.02.030
- K.A. Jonscher, J. Phys. D Appl. Phys., 32, R57 (1999); https://doi.org/10.1088/0022-3727/32/14/201
- T. Badapanda, S. Sarangi, B. Behera and S. Anwar, Curr. Appl. Phys., 14, 1192 (2014); https://doi.org/10.1016/j.cap.2014.06.007
- U. Dash, S. Sahoo, P. Chaudhuri, S.K.S. Parashar and K. Parashar, J. Adv. Ceramics., 3, 89 (2014); https://doi.org/10.1007/s40145-014-0094-0
- B. Tiwari and R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul., 17, 5 (2010); https://doi.org/10.1109/TDEI.2010.5411996
- B. Tiwari and R.N.P. Choudhary, J. Alloys Compd., 493, 1 (2010); https://doi.org/10.1016/j.jallcom.2009.11.120
- H. Singh, A. Kumar and K.L. Yadav, Mater. Sci. Eng. B, 176, 540 (2011); https://doi.org/10.1016/j.mseb.2011.01.010
- R. Ranjan, R. Kumar, B. Behera and R.N.P. Choudhary, Physica B, 404, 3709 (2009); https://doi.org/10.1016/j.physb.2009.06.113
- M.R. Biswal, J. Nanda, N.C. Mishra, S. Anwar and A. Mishra, Adv. Mater. Lett., 5, 531 (2014); https://doi.org/10.5185/amlett.2014.4566
- I. Kosacki, H.U. Anderson, Y. Mizutani and K. Ukai, Solid State Ion., 152-153, 431 (2002); https://doi.org/10.1016/S0167-2738(02)00382-X
- K. Huang, R.S. Tichy and J.B. Goodenough, J. Am. Ceram. Soc., 81, 2565 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02662.x
- J.H. Gong, Y. Li, Z.L. Tang, Y.S. Xie and Z.T. Zhang, Mater. Chem. Phys., 76, 212 (2002); https://doi.org/10.1016/S0254-0584(01)00522-3
- M. Kurumada, H. Hara, F. Munakata and E. Iguchi, Solid State Ion., 176, 245 (2005); https://doi.org/10.1016/j.ssi.2004.08.010
References
J.E. O’Brien, C.M. Stoots, J.S. Herring and J. Hartvigsen, J. Fuel Cell Sci. Technol., 3, 213 (2006); https://doi.org/10.1115/1.2179435
A. Hauch, S.H. Jensen, S. Ramousse and M. Mogensen, J. Electrochem. Soc., 153, A1741 (2006); https://doi.org/10.1149/1.2216562
R. Rivera-Tinoco, C. Mansilla and C. Bouallou, Energy Convers. Manage., 51, 2623 (2010); https://doi.org/10.1016/j.enconman.2010.05.028
C. Sun, R. Hui and J. Roller, J. Solid State Electrochem., 14, 1125 (2010); https://doi.org/10.1007/s10008-009-0932-0
C.W. Sun and U. Stimming, J. Power Sources, 171, 247 (2007); https://doi.org/10.1016/j.jpowsour.2007.06.086
S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier: Oxford, pp 1-22 (2003).
M. Mogensen and K. Kammer, Annu. Rev. Mater. Res., 33, 321 (2003); https://doi.org/10.1146/annurev.matsci.33.022802.092713
S.C. Singhal, Solid State Ion., 135, 305 (2000); https://doi.org/10.1016/S0167-2738(00)00452-5
M. Dokiya, Solid State Ion., 152-153, 383 (2002); https://doi.org/10.1016/S0167-2738(02)00345-4
N.P. Brandon, S. Skinner and B.C.H. Steele, Annu. Rev. Mater. Res., 33, 183 (2003); https://doi.org/10.1146/annurev.matsci.33.022802.094122
K. Wincewicz and J. Cooper, J. Power Sources, 140, 280 (2005); https://doi.org/10.1016/j.jpowsour.2004.08.032
P. Plonczak, M. Gazda, B. Kusz and P. Jasinski, J. Power Sources, 181, 1 (2008); https://doi.org/10.1016/j.jpowsour.2007.12.019
J.M. Ralph, A.C. Schoeler and M. Krumpelt, J. Mater. Sci., 36, 1161 (2001); https://doi.org/10.1023/A:1004881825710
N.A. Baharuddin, A. Muchtar and M.R. Somalu, Int. J. Hydrogen Energy, 42, 9149 (2017); https://doi.org/10.1016/j.ijhydene.2016.04.097
J.M. Ralph, C. Rossignol and R.J. Kumar, Electrochem Soc., 150, A1518 (2003); https://doi.org/10.1149/1.1617300
S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, V.L. Sprenkle and J.W. Stevenson, Electrochem. Solid-State Lett., 5, A173 (2002); https://doi.org/10.1149/1.1483156
S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, J.P. Shelton, V.L. Sprenkle and J.W. Stevenson, J. Power Sources, 113, 1 (2003); https://doi.org/10.1016/S0378-7753(02)00455-X
G.L. Yuan, S.W. Or and H.L.W. Chan, J. Phys. D Appl. Phys., 40, 1196 (2007); https://doi.org/10.1088/0022-3727/40/4/043
K.J. Park, C.H. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim and K.H. Hur, J. Eur. Ceram. Soc., 29, 1735 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.10.021
J. Richter, P. Holtappels, T. Graule and L. Gauckler, Solid State Ion., 179, 2284 (2008); https://doi.org/10.1016/j.ssi.2008.08.007
F. Chen, O.T. Sorensen, G. Meng and D. Peng, J. Mater. Chem., 7, 481 (1997); https://doi.org/10.1039/a605377g
A. Weber and E. Ivers-Tiffee, J. Power Sources, 127, 273 (2004); https://doi.org/10.1016/j.jpowsour.2003.09.024
W.X. Chen, T.L. Wen, H.W. Nie and R. Zheng, Mater. Res. Bull., 38, 1319 (2003); https://doi.org/10.1016/S0025-5408(03)00143-0
D. Bahadur, W. Fischer and M.V. Rane, Mater. Sci. Eng. A, 252, 109 (1998); https://doi.org/10.1016/S0921-5093(98)00653-4
K.S. Cole and H. Robert, J. Chem. Phys., 9, 341 (1941); https://doi.org/10.1063/1.1750906
M. Kumar and K.L. Yadav, J. Phys. Condens. Matter, 91, 242901 (2007); https://doi.org/10.1063/1.2816118
J.L. García-Muñoz, C. Frontera, M.A.G. Aranda, A. Llobet and C. Ritter, Phys. Rev. B Condens. Matter, 63, 064415 (2001); https://doi.org/10.1103/PhysRevB.63.064415
M.P. Gutierrez, J. Mira and J. Rivas, Phys. Lett. A, 323, 473 (2004); https://doi.org/10.1016/j.physleta.2004.02.030
K.A. Jonscher, J. Phys. D Appl. Phys., 32, R57 (1999); https://doi.org/10.1088/0022-3727/32/14/201
T. Badapanda, S. Sarangi, B. Behera and S. Anwar, Curr. Appl. Phys., 14, 1192 (2014); https://doi.org/10.1016/j.cap.2014.06.007
U. Dash, S. Sahoo, P. Chaudhuri, S.K.S. Parashar and K. Parashar, J. Adv. Ceramics., 3, 89 (2014); https://doi.org/10.1007/s40145-014-0094-0
B. Tiwari and R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul., 17, 5 (2010); https://doi.org/10.1109/TDEI.2010.5411996
B. Tiwari and R.N.P. Choudhary, J. Alloys Compd., 493, 1 (2010); https://doi.org/10.1016/j.jallcom.2009.11.120
H. Singh, A. Kumar and K.L. Yadav, Mater. Sci. Eng. B, 176, 540 (2011); https://doi.org/10.1016/j.mseb.2011.01.010
R. Ranjan, R. Kumar, B. Behera and R.N.P. Choudhary, Physica B, 404, 3709 (2009); https://doi.org/10.1016/j.physb.2009.06.113
M.R. Biswal, J. Nanda, N.C. Mishra, S. Anwar and A. Mishra, Adv. Mater. Lett., 5, 531 (2014); https://doi.org/10.5185/amlett.2014.4566
I. Kosacki, H.U. Anderson, Y. Mizutani and K. Ukai, Solid State Ion., 152-153, 431 (2002); https://doi.org/10.1016/S0167-2738(02)00382-X
K. Huang, R.S. Tichy and J.B. Goodenough, J. Am. Ceram. Soc., 81, 2565 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02662.x
J.H. Gong, Y. Li, Z.L. Tang, Y.S. Xie and Z.T. Zhang, Mater. Chem. Phys., 76, 212 (2002); https://doi.org/10.1016/S0254-0584(01)00522-3
M. Kurumada, H. Hara, F. Munakata and E. Iguchi, Solid State Ion., 176, 245 (2005); https://doi.org/10.1016/j.ssi.2004.08.010