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INTRODUCTION

The reduction of resources of fossil fuel makes it a nece-
ssity to discover sustainable as well as clean alternative energy
sources. One of such alternative forthcoming generation energy
carriers is hydrogen which is portable, clean and renewable
[1,2]. Solid oxide fuel cells (SOFCs) are well known sources
of production of hydrogen and one of the striking alternative
energy sources because of its comparatively high efficiency,
inexpensiveness and low sensitivity to impurities [3-7]. The
efficiency of solid oxide fuel cells is approximately 60% and
can reach up to 80% if total heat recovered in the cell [8]. Material
of component of SOFCs plays an important role to reach at
this high efficiency, however certain issues arise which limit
the effectiveness of cathode materials such as lowering the
operating temperature and mismatching of thermal expansion
coefficient with another components result in to fall in the cond-
uctivity and degredation of the material, which further affect
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the performance of the cell [8-11]. To attain desired efficiency,
cathode material of SOFCs must have high electronic condu-
ctivity (larger than 100 S cm-1), large catalytic activities, chemical
compatibility with other components, sufficient porosity and
low cost [4]. There is a number of perovskite cathode materials
like LaMnO3, LaFeO3 and LaCoO3 with appropriate ion doping,
recommended and used as cathode materials in SOFCs as
reported earlier [12]. Size of strontium is comparable to lanth-
anum, hence strontium is generally used as dopant in LaMnO3

which increases the concentration of electrons and holes in
La1-xSrxMnO3±δ (x ≤ 0.80) (LSM) and lift up the electrical cond-
uctivity [13]. However, on lowering the operating temperature
LSM show high value of polarization resistance and activation
energy (Ea) which further fall the SOFC performance [14].
Strontium modified LaFeO3 (LSF) is also reported as promi-
sing cathode material for SOFCs. Substitution of Sr in LaFeO3

produce charge imbalance, which further compensated either
by formation of Fe4+ ion or by creation of oxygen vacancy



and therefore increase the conductivity [15-17]. The flexibility
of perovskite material to the transition and alkali earth metals
provides a huge composition range for challenging targets.
Therefore, in this work, Sr2+ is substituted at lanthanum site of
LaMnFeO3, which create the charge imbalance and charge
neutrality is compensated by reduction or oxidation of Mn
and Fe consequently increase the conductivity.

EXPERIMENTAL

Synthesis: La1-xSrxMn0.50Fe0.50O3 {0.10 ≤ x ≤ 0.40} perov-
skite are synthesized by solid state reaction method. Samples
were prepared by using raw materials strontium carbonate
(SrCO3), manganese oxide (MnO), ferric oxide (Fe2O3) and
lanthanum oxide (La2O3). All the raw powders were procured
from Sigma-Aldrich and 99.9% pure. Raw powders were taken
in stoichiometric ratio and ball milled for 6 h by using zirconia
oxide balls. Ball milled powder was then mixed further for 2 h
with the help of agate mortar and pestle. Precursor was calcined
at 1200 ºC for 12 h and then polyvinyl alcohol (PVA) 2 wt %
was mixed. Hydraulic pressure was used to make pellets which
further sintered at 1400 ºC for 2 h. Sintered samples were further
characterized for study the structural, thermal, electrical and
dielectric properties.

RESULTS AND DISCUSSION

XRD studies: Structural properties of the prepared samples
were studied with the help of X-ray diffractometer. The wave-
length,temperature range, step size and scan rate are 1.54 Å,
20-80 ºC, 0.02 and 2º/min, respectively. Obtained X-Ray patterns
are shown in Fig. 1,while the XRD data is analyzed using X'Pert
High Score Plus software.

High intense as well as sharp peaks confirm the crystalline
nature of the samples. The data shows that the crystal structure
is rhombohedral, space group R-3c and group no. 167. No peak
in XRD pattern is left unassigned, which confirmed that the
prepared samples are crystallized in a single phase. Variation
of occupied volume, specific free volume and crystallographic
lattice parameters with Sr substitution of the prepared crys-
talline material is shown in Table-1. It is observed that lattice
parameters and unit cell volume decreasing with replacement
of La by Sr in all the samples but actually unit cell volume must
increase since ionic radii of Sr2+ is larger than La3+. But it is
not so and this contradiction is arise due to creation of charge
imbalance on substitution of Sr , which further compensated
by (i) conversion of Mn3+/(Fe2+/Fe3+) into Mn4+/Fe4+ (ii) by
creation of oxygen vacancies in the materials. Ionic radii of
Mn4+/Fe4+ smaller than Mn3+/(Fe2+/Fe3+), which cause a decr-
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Fig. 1. XRD pattern of rhombohedral La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40)
solid solutions

ease of unit cell volume. Therefore, it may be probable that in
LSMF system, Mn4+ have small ionic radii influences the system
much powerfully as compared to Sr2+ have larger ionic radii.
Also, as said by Pauling's rule, Mn-O bonds are more strengthen
by Mn4+ ions, which can also decrease the unit cell volume [18].

SEM studies: Morphologies of the grains of samples can
sturdily affect the net conductivity of the materials. Surface
morphology of the prepared samples were studied by using
scanning electron microscope (SEM) Carl Zeiss Supra 55,
Germany. Micrographs (Fig. 2) clearly show that grains are well
attached to each other, which confirm the samples are well sin-
tered and obtained grains are non-uniform, randomly oriented
and with the Sr substitution the average size of grains are decre-
asing. It is reported in literature that with substitution of alkaline
earth metals leads to suppress the necking of grains because
of reduced mobility of grain boundary and therefore reduce
the grain size [19].

TABLE-1 
LATTICE PARAMETERS AND VOLUME OF La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40) 

Lattice parameters 
Composition 

a (Å) c (Å) 
Ratio c/a 

Cell  
volume (Å 3) 

Occupied 
volume 

Specific free 
volume 

La0.90Sr0.10 Mn0.50Fe0.50O3 5.512 13.356 2.423 351.408 40.880 0.883 
La0.80Sr0.20 Mn0.50Fe0.50O3 5.492 13.354 2.431 348.811 41.108 0.882 
La0.70Sr0.30 Mn0.50Fe0.50O3 5.493 13.351 2.430 348.859 41.336 0.881 
La0.60Sr0.40 Mn0.50Fe0.50O3 5.490 13.349 2.431 348.426 41.564 0.880 
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Density: Archimedes liquid displacement method is used
to find out the experimental density and theoretical density is
calculated by the use of following formula.

a
liquid

a l

W

W W
ρ = ×ρ

−
where Wl is weight of pellet in liquid and Wa is weight of
pellet in air; ρ is density of pellet and ρliquid is the density of the
liquid used. Density value of the pellets decrease with Sr modi-
fication (Table-2). The SEM images and calculated density
values of samples are found to be in well agreement.

Thermogravimetric analysis: Thermogravimetric analysis
explains the effect of temperature variation on the weight change
during sintering of the samples. The TGA curves of prepared

pellet are obtained in the air atmosphere at 25 ºC to 800 ºC, at
the heating rate of 5 ºC/min and the reference material used
was Al2O3 powder. Thermogravimetric analysis graphs of
La0.7Sr0.3FexMn1-xO3 ceramic solid solutions with (a) x = 0.10
and (b) x = 0.40 are shown in Fig. 3. From the TGA curves, it
is observed that in the beginning, a sharp weight loss in the
material up to 300 ºC. These kinds of weight loss in the prepared
material arise because of loss of moisture content present in
the pellets in addition to transform of carbonate on heating
into oxide. Beyond 300 ºC and above, weight gain begin in the
material. It is well reported in literature that this weight change
in the material aries because of charge imbalance created on
Sr substitution at A side and Fe at B site in LaMnO3 perovskite.
Replacement become the cause of reduction of Mn4+/Fe4+ into

Fig. 2. Micrographs of La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40) solid solutions

TABLE-2 
DENSITY, AVERAGE GRAIN SIZE AND TOLERANCE FACTOR OF La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40) 

Density 
Composition Theoretical density 

(dth) (g cm-3) 
Experimental 

density (d) (g cm-3) 
(d/dth) (%) 

Average grain 
size (µm) 

Standard 
deviation 

Tolerance factor 

La0.90Sr0.10Mn0.50Fe0.50O3  5.78 5.13 88.76 2.41 0.94 0.727 
La0.80Sr0.20Mn0.50Fe0.50O3  5.62 5.04 89.68 2.16 0.63 0.728 
La0.70Sr0.30Mn0.50Fe0.50O3  5.47 4.97 90.86 1.63 0.55 0.729 
La0.60Sr0.40Mn0.50Fe0.50O3  5.31 4.86 91.53 1.17 0.29 0.729 
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Fig. 3. Thermal graph of  La1-xSrxMn0.50Fe0.50O3 (x = 0.10 and 0.40) solid solutions

Mn3+/(Fe2+/Fe3+) creates oxygen vacancies or the oxidation of
Mn3+/(Fe2+/Fe3+) into Mn4+/Fe4+, which cause annihilation of
oxide vacancies inside the bulk material [20,21]. Also, it is
clearly visible that percentage weight gain in x = 0.40 is compa-
rably more than the x = 0.10, which indicated that prepared
material achieved more stability upon Sr substitution.

Thermal expansion coefficient: Material exhibits higher
value of thermal expansion coefficient (TEC) becomes the
cause of cracking of the electrolyte or delamination at interface
of cathode/electrolyte lead to fall the cell performance [22].
In addition, discrepancy of TEC with other component (anode
and electrolyte) creates thermal stress and reduce the cell perfor-
mance. The TEC curves of samples x = 0.10 and 0.40 up to
800 ºC are shown in Fig. 4.

TEC graphs of La1-xSrxMn0.50Fe0.50O3 (x = 0.10 and 0.40)
solid solutions upto 800 °C are 12.9 × 10-6 and 11.3 × 10-6 ºC-1,
respectively.  At high value of temperature, the foremost reason
of raise or fall the TEC is loss or gain of oxygen in crystal lattice
and in addition to this existence of superstructure plus ordering
of oxygen vacancies lead to potential energy well more symme-
tric because of superior ordering of oxygen vacancies inside
the material [23,24]. In the present samples, oxidation of Mn
and Fe may be the cause of decrease in the TEC value with Sr
substitution.

Dielectric properties: Relative dielectric permittivity (εR)
depend upon frequency, which is given by the following relation:

εR (ω) = ε′(ω) – iωε″ (ω)

where ω, ε′ (ω) and ε″ (ω) are angular frequency, real part of
dielectric constant and imaginary part of dielectric constant,
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Fig. 4. Thermal expansion coefficient of La1-xSrxMn0.50Fe0.50O3 (x = 0.10
and 0.40) solid solutions

respectively. Real part of dielectric constant is in phase with
the applied field whereas imaginary part is in quadrature with
the applied field. Variation of ε′ and ε″ (temperature dependent)
with respect to frequency at different temperature are shown
in Figs. 5 and 6. Real part ε′(ω) of dielectric constant and imag-
inary part ε″(ω) of dielectric constant with respect to frequency
curves are fitted by means of Cole-Cole model. Cole-Cole model
is a relaxation model, which is generally used for the explanation
of dielectric relaxations [25].
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where exponent α, is used as parameter and represent diverse
spectral shapes. If exponent α is equal to zero the relaxations
are stretched, then Cole-Cole model reduces to Debye behaviour.
However, if exponent α is greater than zero, Cole-Cole model
stand for non-Debye behaviour. Different values of exponents
α for both ε′ and ε′′  (Table-3) are more than zero, which specified
that the present systems exhibit non-Debye relaxation behaviour.
Figs. 5 and 6 showed that in the lower frequency region both
ε′ and ε′′ constantly decreasing with rising the frequency for
different temperature values and nearly show a linear behaviour
in the higher frequency region and well explained by dipolar
relaxation phenomenon [26]. There is negligible dielectric loss
in the material, which is confirmed by the absence of peak in
the graphs and hence polarizations are completely dominated
to hopping mechanism [27]. In low frequency region, total
polarization is the contribution of electronic, dipolar, ionic and
space charge polarization and hence exhibit maximum value
but at the higher frequency region both real part ε′ and imagi-
nary part ε′′ lag behind the switching signal of dipolar  orientation,
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Fig. 5. Dielectric constant ε′ with respect to frequency response of La1-xSrxMn0.50Fe0.50O3   (0.10 ≤ x ≤ 0.40) solid solutions
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lead to around linear variation because some number of the
polarizations are filtered out from the net polarizability and
consequently diminish the polarization in this region. Additi-
onally, grain boundary and electrode effect also play important
role in the falling behaviour of dielectric constant at high
frequency as reported in literature whereas Maxwell-Wagner
model very well explain the behaviour of dielectric constant
at low frequency region [28,29]. Also it is noticeably indicated
from the curves that both ε′ and ε′′ increases with Sr addition,
which may not be caused by the dipolar polarization but occur
because of the participation of interfacial polarization.

Impedance spectroscopy: Behaviour of real part of impe-
dance (Z′) and imaginary part of impedance ( Z′′) with respect
to frequency at 50 to 300 ºC for x = 0.10 and 0.40 samples are
given in Fig. 7. It is visibly noticed that at low temperature,
magnitude of Z′ is higher and decreases with rising in frequency,
consequently showing a typical negative temperature coeffi-
cient of resistance [30]. On increasing both temperature and
frequency, Z′ decreases, which confirmed that electrical cond-
uctivity increases [31,32]. At all temperatures values,
assimilation of Z′ in high frequency region indicate the reduc-
tion of barier properties [33,34]. The falling nature of Z′ with

TABLE-3 
VALUES OF α-PARAMETER AT DIFFERENT TEMPERATURE VALUE OF La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40) SOLID SOLUTIONS 

LSMF-0.10 LSMF-0.20 LSMF-0.30 LSMF-0.40 
Temp. (°C) 

From ε′ From ε″ From ε′ From ε″ From ε′ From ε″ From ε′ From ε″ 
50 0.642 0.910 0.924 0.384 0.133 0.254 0.154 0.659 

100 0.321 0.914 0.781 0.281 0.654 0.272 0.156 0.784 
150 0.642 0.933 0.594 0.393 0.614 0.266 0.491 0.669 
200 0.623 0.785 0.933 0.483 0.544 0.265 0.245 0.653 
250 0.586 0.586 0.684 0.235 0.235 0.123 0.235 0.235 
300 0.423 0.548 0.534 0.256 0.259 0.259 0.356 0.325 
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raise in temperature as well as frequency indicate the reduction
of the resistive properties of the prepared material. In all the
prepared samples with increasing temperature, broading of
peaks is observed which verified the temperature dependent
electrical relaxation phenomenon. In higher frequency region,
curves of Z′ assimilation proved the disappearnce of space
charge polarization [35,36].

Electrical properties: The electric conductivity of the

material is given by acG
A

  = σ 
 

l
, where σac, A, l and G be the

AC conductivity, area of cross-section, thickness of pellet and
conductance, respectively. Variation of electrical conductivity
with respect to temperature at 25 ºC to 800 ºC of La1-xSrxMn0.50

Fe0.50O3; (0.10 ≤ x ≤ 0.40) solid solutions are shown in Fig. 8.
Value of conductivity continually increases with tempera-

ture of all the samples. Universal power law (eqn. 5) is used to
determine the conductivity of the material.

σac = ω ε0 ε″ (ω) = ω ε0 ε′ (ω) Tan δ
where ω, ε0 and tan δ represent as the angular frequency, permit-
tivity in free space and dielectric loss, respectively .The maxi-
mum value of the conductivity is given in Table-4 and it is
confirmed that replacement of La by Sr increases the conduc-
tivity in the material. Substitution of Sr create charge imbalance
in the material, which is further compensated by oxidation or
reduction of Mn and Fe leads to increases the conductivity of
the material. In addition to this as reported in literature, grain,
grain boundaries and defects in crystal also play an important
role to increase the conductivity. Doping of alkaline earth metals
in materials leads to formation of ordered oxygen vacancies
clusters, which further act as nucleating sites and therefore make
them unavailable for conduction [37,38]. At low temperature,
in order to dissociate these clusters and make them to mobile,
sufficient energy is required. Therefore, activation energy is the
totaling of dissociation energy in addition to migration energy.
However, at high temperatures, energy required only for mobile
the ions. Consequently overall activation energy is related only
to migration energy at high temperature and therefore, at high
temperature activation energy value is small as compare to value
at low temperature [39,40]. The activation energy (Ea) of the

prepared material is determined by the Arrhenius fitting of cond-
uctivity with temperature of La1-xSrxMn0.50Fe0.50O3; (0.10 ≤ x ≤
0.40) solid solutions (Fig. 8), which clearly show that Sr doping
decrease the Ea value (Table-4). Thus, the results confirmed
that activation energy is in well agreement with conductivity
values.

TABLE-4 
CONDUCTIVITY AND ACTIVATION ENERGY  

OF La1-xSrxMn0.50Fe0.50O3 (0.10 ≤ x ≤ 0.40) 

Conductivity (S cm-1) 
Composition 

600 °C 800 °C 
Activation 

energy (eV) 

La0.90Sr0.10Mn0.50Fe0.50O3  121.09 303.59 0.177 
La0.80Sr0.20Mn0.50Fe0.50O3  132.12 328.61 0.164 
La0.70Sr0.30Mn0.50Fe0.50O3  149.90 359.93 0.100 
La0.60Sr0.40Mn0.50Fe0.50O3  155.96 362.35 0.091 

 
Conclusion

Solid state reaction method was used to prepare La1-xSrx

Mn0.50Fe0.50O3; (0.10 ≤ x ≤ 0.40) perovskite ceramics bulk
material. The XRD analysis confirmed the single phase of the
material and rhombohedral crystal structure. The prepared
material was well sintered as indicatred by SEM micrographs
and the non-uniform grain were randomely oriented whose size
decreased as the Sr content increases. Density of the material
also decreased with Sr substitution, which is in well agreement
with SEM results.TGA analysis showed the weight gain in
the the prepared material above 300 ºC. Thermal expansion
coefficient (TEC) decreases with Sr substitution. Dielectric
analysis confirmed that samples obey non-Debye relaxation
behaviour. Conductivity value increases with temperature and
Sr substitution. Activation energy was found to be decreased
with replacement of La by Sr which is in well agreement with
conductivity values. Therefore, it is concluded that the prepared
material is recommended to be used as cathode of intermediate
temperature solid oxide fuel cells (SOFCs).
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