Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Photocatalytic Activity of β-Ca2-xZnxSiO4 (x = 0, 0.01 and 0.025)
Corresponding Author(s) : Maximus Pranjoto Utomo
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
The compound of β-Ca2SiO4 has been considered as one of the important portand cement components. The existence of metals in the cement raw materials causes β-Ca2-xMxSiO4 formation possibility. The β-Ca2-xZnxSiO4 (x = 0, 0.01 and 0.025) has been prepared and characterized, and aplied for degradation of Congo red. The samples were synthesized by heating stoichiometric amounts of Zn(NO3)2·6H2O, CaCO3 and SiO2 at 950 ºC for 4 h followed by air quenching. The samples were characterized by using XRD, SEM, EDA and UV-visible spectroscopic methods. The XRD patterns indicate that the samples are isomorphous with β-Ca2SiO4. The SEM micrographs depicted the aggregated irregular shape particles having size about 0.2 μm. The EDA measurements revealed that the bulk compositions of materials are as expected. The doping of zinc increases the Eg of the sample and decreases the photocatalytic power for degradation of Congo red under sunlight.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhi-Jun, Y. Zhi-Ping, G. Qing-Lin, L. Pan-Lai and F. Guang-Sheng, Chin. Phys. B, 18, 2068 (2009); https://doi.org/10.1088/1674-1056/18/5/057.
- L. Lakshmi Devi and C.K. Jayasankar, Ceram. Int., 44, 14063 (2018); https://doi.org/10.1016/j.ceramint.2018.05.003.
- A. Prodjosantoso and B. Kennedy, Turk. J. Chem., 41, 548 (2017); https://doi.org/10.3906/kim-1701-28.
- F.L. Han, Q.X. Yang, L.E. Wu and S.W. Guo, Mater. Process. Technol., 418-420, 1657 (2012); https://doi.org/10.4028/www.scientific.net/AMR.418-420.1657.
- J. Qin, C. Cui, C. Yang, X. Cui, B. Hu and J. Huang, J. Clean. Prod., 113, 355 (2016); https://doi.org/10.1016/j.jclepro.2015.11.055.
- R. Choudhary, S. Koppala, A. Srivastava and S. Sasikumar, J. Sol-Gel Sci. Technol., 74, 631 (2015); https://doi.org/10.1007/s10971-015-3642-3.
- J. Liu, C.G. Duan, W.N. Mei, R.W. Smith and J.R. Hardy, J. Chem. Phys., 116, 3864 (2002); https://doi.org/10.1063/1.1446043.
- I. Nettleship, J.L. Shull Jr. and W.M. Kriven, J. Eur. Ceram. Soc., 11, 291 (1993); https://doi.org/10.1016/0955-2219(93)90028-P.
- P. Aggarwal, R.P. Singh and Y. Aggarwal, Cogent Engineering, 2, 1078018 (2015); https://doi.org/10.1080/23311916.2015.1078018.
- G. Photiadis, A. Maries, M. Tyrer, D. Inman, J. Bensted, S. Simons and P. Barnes, Adv. Appl. Ceram., 110, 137 (2011); https://doi.org/10.1179/1743676110Y.0000000018.
- H. Toraya and S. Yamazaki, Acta Crystallogr. B, 58, 613 (2002); https://doi.org/10.1107/S0108768102005189.
- A. Santos, M. Ajbary, V. Morales-Flórez, A. Kherbeche, M. Piñero and L. Esquivias, J. Hazard. Mater., 168, 1397 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.026.
- A. Derdacka-Grzymek and J. Grzymek, 7th International Congress on the Chemistry of Cement, vol. 2 (1980).
- E. Durgun, H. Manzano, R.J.M. Pellenq and J.C. Grossman, Chem. Mater., 24, 1262 (2012); https://doi.org/10.1021/cm203127m.
- R. Grapes, Calc-Silicates and Evaporates. In: Pyrometamorphism. Springer, Berlin, Heidelberg, pp.141–197 (2010); https://doi.org/10.1007/978-3-642-15588-8_4.
- O. Henning and G. Paeselt, Ztschr. Chem., 5, 468 (1965).
- J.S. Romano, M.S. Miranda, M.B.R. Oliveira and F.A. Rodrigues, J. Clean. Prod., 19, 1224 (2011); https://doi.org/10.1016/j.jclepro.2011.03.005.
- Z. Gou, J. Chang, W. Zhai and J. Wang, J. Biomed. Mater. Res. B Appl. Biomater., 73, 244 (2005); https://doi.org/10.1002/jbm.b.30203.
- A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski and Y. Zorenko, Opt. Mater., 39, 282 (2015); https://doi.org/10.1016/j.optmat.2014.10.036.
- A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski and Y. Zorenko, Opt. Mater., 35, 2107 (2013); https://doi.org/10.1016/j.optmat.2013.05.030.
- H. Venkataravanappa, K.N. Venkatachalaiah, R.B. Basavaraj, J.B. Prasanna Kumar, B. Daruka Prasad and H. Nagabhushana, Inorg. NanoMetal Chem., 48, 107 (2018); https://doi.org/10.1080/24701556.2017.1357580.
References
W. Zhi-Jun, Y. Zhi-Ping, G. Qing-Lin, L. Pan-Lai and F. Guang-Sheng, Chin. Phys. B, 18, 2068 (2009); https://doi.org/10.1088/1674-1056/18/5/057.
L. Lakshmi Devi and C.K. Jayasankar, Ceram. Int., 44, 14063 (2018); https://doi.org/10.1016/j.ceramint.2018.05.003.
A. Prodjosantoso and B. Kennedy, Turk. J. Chem., 41, 548 (2017); https://doi.org/10.3906/kim-1701-28.
F.L. Han, Q.X. Yang, L.E. Wu and S.W. Guo, Mater. Process. Technol., 418-420, 1657 (2012); https://doi.org/10.4028/www.scientific.net/AMR.418-420.1657.
J. Qin, C. Cui, C. Yang, X. Cui, B. Hu and J. Huang, J. Clean. Prod., 113, 355 (2016); https://doi.org/10.1016/j.jclepro.2015.11.055.
R. Choudhary, S. Koppala, A. Srivastava and S. Sasikumar, J. Sol-Gel Sci. Technol., 74, 631 (2015); https://doi.org/10.1007/s10971-015-3642-3.
J. Liu, C.G. Duan, W.N. Mei, R.W. Smith and J.R. Hardy, J. Chem. Phys., 116, 3864 (2002); https://doi.org/10.1063/1.1446043.
I. Nettleship, J.L. Shull Jr. and W.M. Kriven, J. Eur. Ceram. Soc., 11, 291 (1993); https://doi.org/10.1016/0955-2219(93)90028-P.
P. Aggarwal, R.P. Singh and Y. Aggarwal, Cogent Engineering, 2, 1078018 (2015); https://doi.org/10.1080/23311916.2015.1078018.
G. Photiadis, A. Maries, M. Tyrer, D. Inman, J. Bensted, S. Simons and P. Barnes, Adv. Appl. Ceram., 110, 137 (2011); https://doi.org/10.1179/1743676110Y.0000000018.
H. Toraya and S. Yamazaki, Acta Crystallogr. B, 58, 613 (2002); https://doi.org/10.1107/S0108768102005189.
A. Santos, M. Ajbary, V. Morales-Flórez, A. Kherbeche, M. Piñero and L. Esquivias, J. Hazard. Mater., 168, 1397 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.026.
A. Derdacka-Grzymek and J. Grzymek, 7th International Congress on the Chemistry of Cement, vol. 2 (1980).
E. Durgun, H. Manzano, R.J.M. Pellenq and J.C. Grossman, Chem. Mater., 24, 1262 (2012); https://doi.org/10.1021/cm203127m.
R. Grapes, Calc-Silicates and Evaporates. In: Pyrometamorphism. Springer, Berlin, Heidelberg, pp.141–197 (2010); https://doi.org/10.1007/978-3-642-15588-8_4.
O. Henning and G. Paeselt, Ztschr. Chem., 5, 468 (1965).
J.S. Romano, M.S. Miranda, M.B.R. Oliveira and F.A. Rodrigues, J. Clean. Prod., 19, 1224 (2011); https://doi.org/10.1016/j.jclepro.2011.03.005.
Z. Gou, J. Chang, W. Zhai and J. Wang, J. Biomed. Mater. Res. B Appl. Biomater., 73, 244 (2005); https://doi.org/10.1002/jbm.b.30203.
A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski and Y. Zorenko, Opt. Mater., 39, 282 (2015); https://doi.org/10.1016/j.optmat.2014.10.036.
A. Baran, J. Barzowska, M. Grinberg, S. Mahlik, K. Szczodrowski and Y. Zorenko, Opt. Mater., 35, 2107 (2013); https://doi.org/10.1016/j.optmat.2013.05.030.
H. Venkataravanappa, K.N. Venkatachalaiah, R.B. Basavaraj, J.B. Prasanna Kumar, B. Daruka Prasad and H. Nagabhushana, Inorg. NanoMetal Chem., 48, 107 (2018); https://doi.org/10.1080/24701556.2017.1357580.