Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Amperometric Detection of Urea by Polyaniline and Poly(O-anisidine) Film under Galvanostatic Method: A Comparative Study
Corresponding Author(s) : K.S. Paithankar
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
The growth mechanism of polyaniline (PANI) and poly(O-anisidine) (POA) with supporting electrolyte HClO4 on indium tin oxide (ITO) substrate has been investigated. The polymer film of PANI and POA deposited on indium tin oxide substrate have been synthesized by electrochemical polymerization method under galvanostatic condition in aqueous solution with supporting electrolyte HClO4 at 27 ºC. To compare the amperometric response of PANI and POA film on aurease enzyme in conventional sensor, the organized materials were characterized by analytical techniques such as UV-visible, FTIR and FE-SEM analyses. The performance of developed sensor was evaluated and the obtained urea biosensor exhibited shorter response time (3 s), wider range 1 × 10-9 to 9 ×10-9 M and the detection limit found to be 1 × 10-9 M. About 80 % of enzyme activity is retained for about 40 days. Modified sensor gives better result by polyaniline than poly(O-anisidine) sensor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Svancara, K. Vytras, K. Kalcher, A. Walcarius and J. Wang, Electroanalysis, 21, 7 (2009); https://doi.org/10.1002/elan.200804340.
- N.S. Gadhari, B.J. Sanghavi and A.K. Srivastava, Anal. Chim. Acta, 703, 31 (2011); https://doi.org/10.1016/j.aca.2011.07.017.
- B. Lakard, G. Herlem, S. Lakard, A. Antoniou and B. Fahys, Biosens. Bioelectron., 19, 1641 (2004); https://doi.org/10.1016/j.bios.2003.12.035.
- A. Sehitogullari and A.H. Uslan, Talanta, 57, 1039 (2002); https://doi.org/10.1016/S0039-9140(02)00149-2.
- S.B. Adeloju, S.J. Shaw and G.G. Wallace, Anal. Chim. Acta, 281, 621 (1993); https://doi.org/10.1016/0003-2670(93)85023-D.
- A. Sassolas, B. Prieto-Simón and J.-L. Marty, J. Anal. Chem., 3, 210 (2012); https://doi.org/10.4236/ajac.2012.33030.
- D.K. Bandgar, G.D. Khuspe, R.C. Pawar, C.S. Lee and V.B. Patil, Appl. Nanosci., 4, 27 (2014); https://doi.org/10.1007/s13204-012-0175-8.
- S.K. Shukla, A. Bharadvaja, A. Tiwari, G. K. Parashar and G. C. Dubey, Mater. Lett., 1, 129 (2010); https://doi.org/10.5185/amlett.2010.3105.
- V.K. Gade, D.J. Shirale, P.D. Gaikwad, P.A. Savale, K.P. Kakde, H.J. Kharat and M.D. Shirsat, React. Funct. Polym., 66, 1420 (2006); https://doi.org/10.1016/j.reactfunctpolym.2006.04.005.
References
I. Svancara, K. Vytras, K. Kalcher, A. Walcarius and J. Wang, Electroanalysis, 21, 7 (2009); https://doi.org/10.1002/elan.200804340.
N.S. Gadhari, B.J. Sanghavi and A.K. Srivastava, Anal. Chim. Acta, 703, 31 (2011); https://doi.org/10.1016/j.aca.2011.07.017.
B. Lakard, G. Herlem, S. Lakard, A. Antoniou and B. Fahys, Biosens. Bioelectron., 19, 1641 (2004); https://doi.org/10.1016/j.bios.2003.12.035.
A. Sehitogullari and A.H. Uslan, Talanta, 57, 1039 (2002); https://doi.org/10.1016/S0039-9140(02)00149-2.
S.B. Adeloju, S.J. Shaw and G.G. Wallace, Anal. Chim. Acta, 281, 621 (1993); https://doi.org/10.1016/0003-2670(93)85023-D.
A. Sassolas, B. Prieto-Simón and J.-L. Marty, J. Anal. Chem., 3, 210 (2012); https://doi.org/10.4236/ajac.2012.33030.
D.K. Bandgar, G.D. Khuspe, R.C. Pawar, C.S. Lee and V.B. Patil, Appl. Nanosci., 4, 27 (2014); https://doi.org/10.1007/s13204-012-0175-8.
S.K. Shukla, A. Bharadvaja, A. Tiwari, G. K. Parashar and G. C. Dubey, Mater. Lett., 1, 129 (2010); https://doi.org/10.5185/amlett.2010.3105.
V.K. Gade, D.J. Shirale, P.D. Gaikwad, P.A. Savale, K.P. Kakde, H.J. Kharat and M.D. Shirsat, React. Funct. Polym., 66, 1420 (2006); https://doi.org/10.1016/j.reactfunctpolym.2006.04.005.