Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Electrochemical Performance of α-Fe2O3 Nano Ellipse as Anode for Lithium-Ion Batteries
Corresponding Author(s) : Lukman Noerochim
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
α-Fe2O3 with nano ellipse structure was successfully synthesized by one-step hydrothermal method with adding 3, 6, and 9 mmol glycine at 160 °C for 10 h. FE-SEM images present that the shape and size of α-Fe2O3 is nano ellipse with dimensions in the range length of 130–200 nm and in the range diameter of 77–120 nm. The as-prepared α-Fe2O3 nano ellipse with the addition of glycine by 6 mmol exhibited excellent cycling performance and rate capability when used as anode for lithium ion batteries, obtaining reversible discharge capacity of 206.75 mAh g-1 at 0.3 C. This is attributed to the nano ellipse structure delivering a large particle surface area thus increasing the electric and ionic conductivity of the α-Fe2O3 particles as anode. This result demonstrates that α-Fe2O3 nano ellipse could be a good candidate as anode material for lithium-ion battery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Nature, 407, 496 (2000); https://doi.org/10.1038/35035045.
- Z. Li, L. Li, W. Zhong, A. Cheng, W. Fu, Z. Li and H. Zhang, J. Alloys Compd., 766, 253 (2018); https://doi.org/10.1016/j.jallcom.2018.06.316.
- P. Roy and S.K. Srivastava, J. Mater. Chem. A Mater. Energy Sustain., 3, 2454 (2015); https://doi.org/10.1039/C4TA04980B.
- M.N. Obrovac and V.L. Chevrier, Chem. Rev., 114, 11444 (2014); https://doi.org/10.1021/cr500207g.
- W. Guanghui, L. Ruiyi, L. Zaijun, L. Junkang, G. Zhiguo and W. Guangli, Electrochim. Acta, 171, 156 (2015); https://doi.org/10.1016/j.electacta.2015.05.016.
- S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, Adv. Funct. Mater., 27, 1605017 (2017); https://doi.org/10.1002/adfm.201605017.
- Y. Gu, F. Wu and Y. Wang, Adv. Funct. Mater., 23, 893 (2013); https://doi.org/10.1002/adfm.201202136.
- Z. Wang, Z. Wang, W. Liu, W. Xiao and X.W.D. Lou, Energy Environ. Sci., 6, 87 (2013); https://doi.org/10.1039/C2EE23330D.
- C. Li, Z. Li, X. Ye, X. Yang, G. Zhang and Z. Li, Chem. Eng. J., 334, 1614 (2018); https://doi.org/10.1016/j.cej.2017.11.142.
- S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao and D. Wang, Energy Environ. Sci., 7, 632 (2014); https://doi.org/10.1039/C3EE43319F.
- F. Zhou, S. Xin, H.-W. Liang, L.-T. Song and S.-H. Yu, Angew. Chem. Int. Ed., 53, 11552 (2014); https://doi.org/10.1002/anie.201407103.
- X. Zhu, Y. Zhu, S. Murali, M.D. Stoller and R.S. Ruoff, ACS Nano, 5, 3333 (2011); https://doi.org/10.1021/nn200493r.
- Y. Sun, X. Hu, W. Luo and Y. Huang, ACS Nano, 5, 7100 (2011); https://doi.org/10.1021/nn201802c.
- Z. Wang, S. Madhavi and X. Wen (David) Lou, J. Phys. Chem. C, 116, 12508 (2012); https://doi.org/10.1021/jp304216z.
- H.B. Wu, J.S. Chen, H.H. Hng and X. Wen (David) Lou, Nanoscale, 4, 2526 (2012); https://doi.org/10.1039/c2nr11966h.
- K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M.V. Kovalenko, J. Am. Chem. Soc., 135, 4199 (2013); https://doi.org/10.1021/ja312604r.
- T. Tao, A.M. Glushenkov, C. Zhang, H. Zhang, D. Zhou, Z. Guo, H.K. Liu, Q. Chen, H. Hu and Y. Chen, J. Mater. Chem., 21, 9350 (2011); https://doi.org/10.1039/c1jm10220f.
- H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010); https://doi.org/10.1021/ja105296a.
- J. Qu, Q.-D. Wu, Y.-R. Ren, Z. Su, C. Lai and J.-N. Ding, Chem. Asian J., 7, 2516 (2012); https://doi.org/10.1002/asia.201200551.
- Y. Chen, H. Xia, L. Lu and J. Xue, J. Mater. Chem., 22, 5006 (2012); https://doi.org/10.1039/c2jm15440d.
- X. Wang, Y. Xiao, C. Hu and M. Cao, Mater. Res. Bull., 59, 162 (2014); https://doi.org/10.1016/j.materresbull.2014.07.008.
- Z. Wang, D. Luan, S. Madhavi, Y. Hu and X. Wen (David) Lou, Energy Environ. Sci., 5, 5252 (2012); https://doi.org/10.1039/C1EE02831F.
- X.-L. Wu, Y.-G. Guo, L.-J. Wan and C.-W. Hu, J. Phys. Chem. C, 112, 16824 (2008); https://doi.org/10.1021/jp8058307.
- R. Liu, C. Zhang, Q. Wang, C. Shen, Y. Wang, Y. Dong, N. Zhang and M. Wu, J. Alloys Compd., 742, 490 (2018); https://doi.org/10.1016/j.jallcom.2018.01.262.
- M. Wu, J. Chen, C. Wang, F. Wang, B. Yi, W. Su, Z. Wei and S. Liu, Electrochim. Acta, 132, 533 (2014); https://doi.org/10.1016/j.electacta.2014.04.032.
- J. Wang, L. Lin and D. He, J. Alloys Compd., 750, 871 (2018); https://doi.org/10.1016/j.jallcom.2018.04.079.
- J. Guo, L. Chen, G. Wang, X. Zhang and F. Li, J. Power Sources, 246, 862 (2014); https://doi.org/10.1016/j.jpowsour.2013.08.052.
- J. Liu, W. Zhou, L. Lai, H. Yang, S. Hua Lim, Y. Zhen, T. Yu, Z. Shen and J. Lin, Nano Energy, 2, 726 (2013); https://doi.org/10.1016/j.nanoen.2012.12.008.
- Y.-M. Lin, P.R. Abel, A. Heller and C.B. Mullins, J. Phys. Chem. Lett., 2, 2885 (2011); https://doi.org/10.1021/jz201363j.
- J. Chen, L. Xu, W. Li and X. Gou, Adv. Mater., 17, 582 (2005); https://doi.org/10.1002/adma.200401101.
- B. Wang, J.S. Chen, H.B. Wu, Z. Wang and X.W.D. Lou, J. Am. Chem. Soc., 133, 17146 (2011); https://doi.org/10.1021/ja208346s.
- J. Lian, X. Duan, J. Ma, P. Peng, T. Kim and W. Zheng, ACS Nano, 3, 3749 (2009); https://doi.org/10.1021/nn900941e.
- H. Wang, Y. Zhou, Y. Shen, Y. Li, Q. Zuo and Q. Duan, Electrochim. Acta, 158, 105 (2015); https://doi.org/10.1016/j.electacta.2015.01.149.
- Y. Wang, J. Roller and R. Maric, J. Power Sources, 378, 511 (2018); https://doi.org/10.1016/j.jpowsour.2017.12.047.
- X. Hu, J.C. Yu, J. Gong, Q. Li and G. Li, Adv. Mater., 19, 2324 (2007); https://doi.org/10.1002/adma.200602176.
- S.F. Abbas, S.-J. Seo, K.-T. Park, B.-S. Kim and T.-S. Kim, J. Alloys Compd., 720, 8 (2017); https://doi.org/10.1016/j.jallcom.2017.05.244.
- A.I. Ioffe, M.V. Inozemtsev, A.S. Lipilin, M.V. Perfilev and S.V. Karpachov, Phys. Status Solidi, 30, 87 (1975); https://doi.org/10.1002/pssa.2210300109.
- H. Chen, Y. Zhao, M. Yang, J. He, P.K. Chu, J. Zhang and S. Wu, Anal. Chim. Acta, 659, 266 (2010); https://doi.org/10.1016/j.aca.2009.11.040.
- X. Liu, W. Si, J. Zhang, X. Sun, J. Deng, S. Baunack, S. Oswald, L. Liu, C. Yan and O.G. Schmidt, Sci. Rep., 4, 7452 (2015); https://doi.org/10.1038/srep07452.
- H. Liu, G. Wang, J. Wang and D. Wexler, Electrochem. Commun., 10, 1879 (2008); https://doi.org/10.1016/j.elecom.2008.09.036.
References
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Nature, 407, 496 (2000); https://doi.org/10.1038/35035045.
Z. Li, L. Li, W. Zhong, A. Cheng, W. Fu, Z. Li and H. Zhang, J. Alloys Compd., 766, 253 (2018); https://doi.org/10.1016/j.jallcom.2018.06.316.
P. Roy and S.K. Srivastava, J. Mater. Chem. A Mater. Energy Sustain., 3, 2454 (2015); https://doi.org/10.1039/C4TA04980B.
M.N. Obrovac and V.L. Chevrier, Chem. Rev., 114, 11444 (2014); https://doi.org/10.1021/cr500207g.
W. Guanghui, L. Ruiyi, L. Zaijun, L. Junkang, G. Zhiguo and W. Guangli, Electrochim. Acta, 171, 156 (2015); https://doi.org/10.1016/j.electacta.2015.05.016.
S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, Adv. Funct. Mater., 27, 1605017 (2017); https://doi.org/10.1002/adfm.201605017.
Y. Gu, F. Wu and Y. Wang, Adv. Funct. Mater., 23, 893 (2013); https://doi.org/10.1002/adfm.201202136.
Z. Wang, Z. Wang, W. Liu, W. Xiao and X.W.D. Lou, Energy Environ. Sci., 6, 87 (2013); https://doi.org/10.1039/C2EE23330D.
C. Li, Z. Li, X. Ye, X. Yang, G. Zhang and Z. Li, Chem. Eng. J., 334, 1614 (2018); https://doi.org/10.1016/j.cej.2017.11.142.
S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao and D. Wang, Energy Environ. Sci., 7, 632 (2014); https://doi.org/10.1039/C3EE43319F.
F. Zhou, S. Xin, H.-W. Liang, L.-T. Song and S.-H. Yu, Angew. Chem. Int. Ed., 53, 11552 (2014); https://doi.org/10.1002/anie.201407103.
X. Zhu, Y. Zhu, S. Murali, M.D. Stoller and R.S. Ruoff, ACS Nano, 5, 3333 (2011); https://doi.org/10.1021/nn200493r.
Y. Sun, X. Hu, W. Luo and Y. Huang, ACS Nano, 5, 7100 (2011); https://doi.org/10.1021/nn201802c.
Z. Wang, S. Madhavi and X. Wen (David) Lou, J. Phys. Chem. C, 116, 12508 (2012); https://doi.org/10.1021/jp304216z.
H.B. Wu, J.S. Chen, H.H. Hng and X. Wen (David) Lou, Nanoscale, 4, 2526 (2012); https://doi.org/10.1039/c2nr11966h.
K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M.V. Kovalenko, J. Am. Chem. Soc., 135, 4199 (2013); https://doi.org/10.1021/ja312604r.
T. Tao, A.M. Glushenkov, C. Zhang, H. Zhang, D. Zhou, Z. Guo, H.K. Liu, Q. Chen, H. Hu and Y. Chen, J. Mater. Chem., 21, 9350 (2011); https://doi.org/10.1039/c1jm10220f.
H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010); https://doi.org/10.1021/ja105296a.
J. Qu, Q.-D. Wu, Y.-R. Ren, Z. Su, C. Lai and J.-N. Ding, Chem. Asian J., 7, 2516 (2012); https://doi.org/10.1002/asia.201200551.
Y. Chen, H. Xia, L. Lu and J. Xue, J. Mater. Chem., 22, 5006 (2012); https://doi.org/10.1039/c2jm15440d.
X. Wang, Y. Xiao, C. Hu and M. Cao, Mater. Res. Bull., 59, 162 (2014); https://doi.org/10.1016/j.materresbull.2014.07.008.
Z. Wang, D. Luan, S. Madhavi, Y. Hu and X. Wen (David) Lou, Energy Environ. Sci., 5, 5252 (2012); https://doi.org/10.1039/C1EE02831F.
X.-L. Wu, Y.-G. Guo, L.-J. Wan and C.-W. Hu, J. Phys. Chem. C, 112, 16824 (2008); https://doi.org/10.1021/jp8058307.
R. Liu, C. Zhang, Q. Wang, C. Shen, Y. Wang, Y. Dong, N. Zhang and M. Wu, J. Alloys Compd., 742, 490 (2018); https://doi.org/10.1016/j.jallcom.2018.01.262.
M. Wu, J. Chen, C. Wang, F. Wang, B. Yi, W. Su, Z. Wei and S. Liu, Electrochim. Acta, 132, 533 (2014); https://doi.org/10.1016/j.electacta.2014.04.032.
J. Wang, L. Lin and D. He, J. Alloys Compd., 750, 871 (2018); https://doi.org/10.1016/j.jallcom.2018.04.079.
J. Guo, L. Chen, G. Wang, X. Zhang and F. Li, J. Power Sources, 246, 862 (2014); https://doi.org/10.1016/j.jpowsour.2013.08.052.
J. Liu, W. Zhou, L. Lai, H. Yang, S. Hua Lim, Y. Zhen, T. Yu, Z. Shen and J. Lin, Nano Energy, 2, 726 (2013); https://doi.org/10.1016/j.nanoen.2012.12.008.
Y.-M. Lin, P.R. Abel, A. Heller and C.B. Mullins, J. Phys. Chem. Lett., 2, 2885 (2011); https://doi.org/10.1021/jz201363j.
J. Chen, L. Xu, W. Li and X. Gou, Adv. Mater., 17, 582 (2005); https://doi.org/10.1002/adma.200401101.
B. Wang, J.S. Chen, H.B. Wu, Z. Wang and X.W.D. Lou, J. Am. Chem. Soc., 133, 17146 (2011); https://doi.org/10.1021/ja208346s.
J. Lian, X. Duan, J. Ma, P. Peng, T. Kim and W. Zheng, ACS Nano, 3, 3749 (2009); https://doi.org/10.1021/nn900941e.
H. Wang, Y. Zhou, Y. Shen, Y. Li, Q. Zuo and Q. Duan, Electrochim. Acta, 158, 105 (2015); https://doi.org/10.1016/j.electacta.2015.01.149.
Y. Wang, J. Roller and R. Maric, J. Power Sources, 378, 511 (2018); https://doi.org/10.1016/j.jpowsour.2017.12.047.
X. Hu, J.C. Yu, J. Gong, Q. Li and G. Li, Adv. Mater., 19, 2324 (2007); https://doi.org/10.1002/adma.200602176.
S.F. Abbas, S.-J. Seo, K.-T. Park, B.-S. Kim and T.-S. Kim, J. Alloys Compd., 720, 8 (2017); https://doi.org/10.1016/j.jallcom.2017.05.244.
A.I. Ioffe, M.V. Inozemtsev, A.S. Lipilin, M.V. Perfilev and S.V. Karpachov, Phys. Status Solidi, 30, 87 (1975); https://doi.org/10.1002/pssa.2210300109.
H. Chen, Y. Zhao, M. Yang, J. He, P.K. Chu, J. Zhang and S. Wu, Anal. Chim. Acta, 659, 266 (2010); https://doi.org/10.1016/j.aca.2009.11.040.
X. Liu, W. Si, J. Zhang, X. Sun, J. Deng, S. Baunack, S. Oswald, L. Liu, C. Yan and O.G. Schmidt, Sci. Rep., 4, 7452 (2015); https://doi.org/10.1038/srep07452.
H. Liu, G. Wang, J. Wang and D. Wexler, Electrochem. Commun., 10, 1879 (2008); https://doi.org/10.1016/j.elecom.2008.09.036.