Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics and Mechanistic Investigation of Ru(III) Catalyzed Oxidative Degradation of Linezolid by Permanganate at Environmentally Relevant pH
Corresponding Author(s) : Vijaykumar S. Bhamare
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
The influences of [permanganate], [linezolid], [Ru3+], pH, temperature, ionic strength, solvent polarity, etc. on the rates of uncatalyzed and Ru3+ catalyzed oxidative degradation of linezolid by Mn7+ were investigated at environmentally relevant pH. The increase in [permanganate], [linezolid] and temperature increases the rates of uncatalyzed and catalyzed reactions. It is observed from the calculated pH dependent second order constants that the rate of reaction decreases with increase in pH from 3.0 to 9.0. The values of apparent second order rate constants are 12 times faster in the presence of Ru3+. Four degraded products of linezolid were identified with the help of HR-MS data. Based on kinetic and HR-MS data, a plausible catalytic mechanism was proposed. In this mechanism, Ru3+ acts as an electron shuttle and was oxidized by Mn7+ to the higher oxidation states of ruthenium such as Ru6+ and Ru7+. Activation parameters were determined and discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.C. Melton and S.D. Brown, Int. J. Med. Chem., 2012, 1 (2012); https://doi.org/10.1155/2012/693903.
- H.C. Zhang, W.R. Chen and C.H. Huang, Environ. Sci. Technol., 42, 5548 (2008); https://doi.org/10.1021/es703143g.
- Environmental Protection Agency (EPA), Guidance Manual Alternative Disinfectants and Oxidants (1999).
- J.C. Abbar, S.D. Lamani and S.T. Nandibewoor, J. Solution Chem., 40, 502 (2011); https://doi.org/10.1007/s10953-011-9655-9.
- R.M. Kulkarni, V.S. Bhamare and B. Santhakumari, Desalination Water Treat., 57, 24999 (2016); https://doi.org/10.1080/19443994.2016.1149110.
- R.M. Kulkarni, D.C. Bilehal and S.T. Nandibewoor, Transition Met. Chem., 28, 199 (2003); https://doi.org/10.1023/A:1022924400513.
- J.R. Coffman, J. Augsburg, G.W. Beran, H.R. Colten, C. Greig, J. Halloran, D. Hayes, J.B. Kaneene, A. Macdonald, K. Mcnutt, D.L. Meeker, S.C. Nickerson, T. Seay and R.G. Stewart, Committee on Drug Use in Food Animals, The Use of Drugs in Food Animals, National Research Council, National Academy Press, Washington DC (1999).
- G. French, J. Antimicrob. Chemother., 51, 45 (2003); https://doi.org/10.1093/jac/dkg253.
- C.B. Landersdorfer, J.B. Bulitta, M. Kinzig, U. Holzgrabe and F. Sörgel, Clin. Pharmacokinet., 48, 89 (2009); https://doi.org/10.2165/00003088-200948020-00002.
- A.K. Das, Coord. Chem. Rev., 213, 307 (2001); https://doi.org/10.1016/S0010-8545(00)00376-3.
- K.N. Shivananda, B. Lakshmi, R.V. Jagadeesh, Puttaswamy and K.N. Mahendra, Appl. Catal. A Gen., 326, 202 (2007); https://doi.org/10.1016/j.apcata.2007.04.017.
- R.M. Kulkarni, V.S. Bhamare and B. Santhakumari, Desalination Water Treat., 57, 28349 (2016);
- J. Zhang, Y. Zhang, H. Wang and X. Guan, J. Environ. Sci., 26, 1395 (2014); https://doi.org/10.1016/j.jes.2014.05.004.
- G.H. Jeffery, Vogel’s Textbook of Quantitative Chemical Analysis, ELBS, Longman: Essex, U.K., p. 370 (1996).
- L.I. Simandi, M. Jaky, C.R. Savage and Z.A. Schelly, J. Am. Chem. Soc., 107, 4220 (1985); https://doi.org/10.1021/ja00300a023.
- S. Bhattacharya and P. Banerjee, Bull. Chem. Soc. Jpn., 69, 3475 (1996); https://doi.org/10.1246/bcsj.69.3475.
- E.A. Moelwyn-Hughes, Kinetics of Reaction in Solutions, Oxford University Press: London, p. 297 (1947).
- J. Zhang, B. Sun, X. Guan, H. Wang, H. Bao, Y. Huang, J. Qiao and G. Zhou, Environ. Sci. Technol., 47, 13011 (2013); https://doi.org/10.1021/es402118v.
- N.N. Greenwood and A. Earnshaw, Chemistry of Elements, Pergamon Press: Oxford (1997).
- J. Zhang and X. Guan, Desalination Water Treat., 52, 4592 (2014); https://doi.org/10.1080/19443994.2013.869664.
- S.I. Abdullah, S.K. Al-Ghreizat and H.M. Abdel-Halim, Asian J. Chem., 27, 3877 (2015); https://doi.org/10.14233/ajchem.2015.19039.
- K.J. Laidler, Chemical Kinetics, Pearson Education, Singapore Ltd., Indian Branch, Delhi, India, p. 198 (2004).
- E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press: New York (1966).
References
T.C. Melton and S.D. Brown, Int. J. Med. Chem., 2012, 1 (2012); https://doi.org/10.1155/2012/693903.
H.C. Zhang, W.R. Chen and C.H. Huang, Environ. Sci. Technol., 42, 5548 (2008); https://doi.org/10.1021/es703143g.
Environmental Protection Agency (EPA), Guidance Manual Alternative Disinfectants and Oxidants (1999).
J.C. Abbar, S.D. Lamani and S.T. Nandibewoor, J. Solution Chem., 40, 502 (2011); https://doi.org/10.1007/s10953-011-9655-9.
R.M. Kulkarni, V.S. Bhamare and B. Santhakumari, Desalination Water Treat., 57, 24999 (2016); https://doi.org/10.1080/19443994.2016.1149110.
R.M. Kulkarni, D.C. Bilehal and S.T. Nandibewoor, Transition Met. Chem., 28, 199 (2003); https://doi.org/10.1023/A:1022924400513.
J.R. Coffman, J. Augsburg, G.W. Beran, H.R. Colten, C. Greig, J. Halloran, D. Hayes, J.B. Kaneene, A. Macdonald, K. Mcnutt, D.L. Meeker, S.C. Nickerson, T. Seay and R.G. Stewart, Committee on Drug Use in Food Animals, The Use of Drugs in Food Animals, National Research Council, National Academy Press, Washington DC (1999).
G. French, J. Antimicrob. Chemother., 51, 45 (2003); https://doi.org/10.1093/jac/dkg253.
C.B. Landersdorfer, J.B. Bulitta, M. Kinzig, U. Holzgrabe and F. Sörgel, Clin. Pharmacokinet., 48, 89 (2009); https://doi.org/10.2165/00003088-200948020-00002.
A.K. Das, Coord. Chem. Rev., 213, 307 (2001); https://doi.org/10.1016/S0010-8545(00)00376-3.
K.N. Shivananda, B. Lakshmi, R.V. Jagadeesh, Puttaswamy and K.N. Mahendra, Appl. Catal. A Gen., 326, 202 (2007); https://doi.org/10.1016/j.apcata.2007.04.017.
R.M. Kulkarni, V.S. Bhamare and B. Santhakumari, Desalination Water Treat., 57, 28349 (2016);
J. Zhang, Y. Zhang, H. Wang and X. Guan, J. Environ. Sci., 26, 1395 (2014); https://doi.org/10.1016/j.jes.2014.05.004.
G.H. Jeffery, Vogel’s Textbook of Quantitative Chemical Analysis, ELBS, Longman: Essex, U.K., p. 370 (1996).
L.I. Simandi, M. Jaky, C.R. Savage and Z.A. Schelly, J. Am. Chem. Soc., 107, 4220 (1985); https://doi.org/10.1021/ja00300a023.
S. Bhattacharya and P. Banerjee, Bull. Chem. Soc. Jpn., 69, 3475 (1996); https://doi.org/10.1246/bcsj.69.3475.
E.A. Moelwyn-Hughes, Kinetics of Reaction in Solutions, Oxford University Press: London, p. 297 (1947).
J. Zhang, B. Sun, X. Guan, H. Wang, H. Bao, Y. Huang, J. Qiao and G. Zhou, Environ. Sci. Technol., 47, 13011 (2013); https://doi.org/10.1021/es402118v.
N.N. Greenwood and A. Earnshaw, Chemistry of Elements, Pergamon Press: Oxford (1997).
J. Zhang and X. Guan, Desalination Water Treat., 52, 4592 (2014); https://doi.org/10.1080/19443994.2013.869664.
S.I. Abdullah, S.K. Al-Ghreizat and H.M. Abdel-Halim, Asian J. Chem., 27, 3877 (2015); https://doi.org/10.14233/ajchem.2015.19039.
K.J. Laidler, Chemical Kinetics, Pearson Education, Singapore Ltd., Indian Branch, Delhi, India, p. 198 (2004).
E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press: New York (1966).