Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidative Degradation of Paliperidone Using Potassium Permangnate in Acid Medium
Corresponding Author(s) : K.A. Thabaj
Asian Journal of Chemistry,
Vol. 31 No. 2 (2019): Vol. 31 No. 2
Abstract
Oxidative degradation reactions of paliperidone are studied using potassium permanganate in acidic medium spectrophotometrically. Complete reaction was carried out in pseudo first order condition. The reaction orders were calculated with respect to the paliperidone and acid, the obtained values indicate that these reactant have less than first order dependency on the reaction rate. Oxidation products were identified using LC-MS technique and their m/z values were found to be 207, 221 and 443. Kinetics and the mechanism of the reactions were derived from the results identified. The reactions were studied at four different temperatures with different paliperidone and acid concentrations. The activation and thermodynamic parameters were calculated by graphical method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, B. Santhakumari and S.T. Nandibewoor, Prog. React. Kinet. Mech., 41, 245 (2016); https://doi.org/10.3184/146867816X14696298762238.
- S.R. Melo, M. Homem-de-Mello, D. Silveira and L.A. Simeoni, PDA J. Pharm. Sci. Technol., 68, 221 (2014); https://doi.org/10.5731/pdajpst.2014.00974.
- S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan and D.H.B. Ripin, Chem. Rev., 106, 2943 (2006); https://doi.org/10.1021/cr040679f.
- D.C. Bilehal, R.M. Kulkarni and S.T. Nandibewoor, J. Mol. Catal., 232, 21 (2005); https://doi.org/10.1016/j.molcata.2005.01.020.
- K.A. Thabaj, S.D. Kulkarni, S.A. Chimatadar and S.T. Nandibewoor, Polyhedron, 26, 4877 (2007); https://doi.org/10.1016/j.poly.2007.06.030.
- R. Skibinski, L. Komsta and T. Inglot, Biomed. Chromatogr., 30, 894 (2016); https://doi.org/10.1002/bmc.3625.
- L. Das, S.K. Barodia, S. Sengupta and J.K. Basu, Int. J. Environ. Sci. Technol., 12, 317 (2015); https://doi.org/10.1007/s13762-013-0466-y.
- K.K. Nanda, W.D. Blincoe, L.R. Allain, W.P. Wuelfing and P.A. Harmon, J. Pharm. Sci., 106, 1347 (2017); https://doi.org/10.1016/j.xphs.2017.01.025.
- K.A. Attia, N.M. El-Abassawi, A. El-Olemy and A.H. Abdelazim, New J. Chem., 42, 995 (2018); https://doi.org/10.1039/C7NJ03809G.
- M. Markiewicz, C. Jungnickel, S. Stolte, A. Bialk-Bielinska, J. Kumirska and W. Mrozik, J. Hazard. Mater., 324, 428 (2017); https://doi.org/10.1016/j.jhazmat.2016.11.008.
- S. Edoardo and C. Rosalia, J. Cent. Nerv. Syst. Dis., 3, 27 (2011).
- M. del P. Corena-McLeod, A. Oliveros, C. Charlesworth, B. Madden, Y.Q. Liang, M. Boules, A. Shaw, K. Williams and E. Richelson, Brain Res., 1233, 8 (2008); https://doi.org/10.1016/j.brainres.2008.07.021.
- R.B. Patel, M.R. Patel, K.K. Bhatt and B.G. Patel, Anal. Methods, 2, 525 (2010); https://doi.org/10.1039/b9ay00276f.
- N. Yasui-Furukori, M. Hidestrand, E. Spina, G. Facciola, M.G. Scordo and G. Tybring, Drug Metab. Dispos., 29, 1263 (2001).
- V. Devra, A. Jain and S. Jain, World J. Pharm. Res., 4, 963 (2014).
- D.S. Sanjay and U.B. Vijaya, J. Pharm. Res., 6, 39 (2013).
- S.A. Jadhav, S.B. Landge, S.L. Jadhav, N.C. Niphade, S.R. Bembalkar and V.T. Mathad, Chromatogr. Res. Int., Article ID 929876 (2011); https://doi.org/10.4061/2011/929876.
- L. Kotai, I. Gacs, I.E. Sajo, P.K. Sharma and K.K. Banerji, Trends Inorg. Chem., 11, 25 (2009).
- J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F.T. Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press Ltd.: New York, p. 771 (1975).
- D.C. Bilehal, R.M. Kulkarni and S.T. Nandibewoor, Can. J. Chem., 79, 1926 (2001); https://doi.org/10.1139/v01-173.
- L.N. Jattinagoudar, K.S. Byadagi, S.T. Nandibewoor and S.A. Chimatadar, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 45, 1138 (2015); https://doi.org/10.1080/15533174.2013.862684.
- C. Walling, Free Radicals in Solution, Academic Press: New York, p. 38 (1957).
- Z.D. Bugarcic, S.T. Nandibewoor, M.S.A. Hamza, F. Heinemann and R. van Eldik, J. Chem. Soc., Dalton Trans., 2984 (2006); https://doi.org/10.1039/B516771J.
- S.A. Farokhi and S.T. Nandibewoor, Tetrahedron, 59, 7595 (2003); https://doi.org/10.1016/S0040-4020(03)01148-7.
References
R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, B. Santhakumari and S.T. Nandibewoor, Prog. React. Kinet. Mech., 41, 245 (2016); https://doi.org/10.3184/146867816X14696298762238.
S.R. Melo, M. Homem-de-Mello, D. Silveira and L.A. Simeoni, PDA J. Pharm. Sci. Technol., 68, 221 (2014); https://doi.org/10.5731/pdajpst.2014.00974.
S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan and D.H.B. Ripin, Chem. Rev., 106, 2943 (2006); https://doi.org/10.1021/cr040679f.
D.C. Bilehal, R.M. Kulkarni and S.T. Nandibewoor, J. Mol. Catal., 232, 21 (2005); https://doi.org/10.1016/j.molcata.2005.01.020.
K.A. Thabaj, S.D. Kulkarni, S.A. Chimatadar and S.T. Nandibewoor, Polyhedron, 26, 4877 (2007); https://doi.org/10.1016/j.poly.2007.06.030.
R. Skibinski, L. Komsta and T. Inglot, Biomed. Chromatogr., 30, 894 (2016); https://doi.org/10.1002/bmc.3625.
L. Das, S.K. Barodia, S. Sengupta and J.K. Basu, Int. J. Environ. Sci. Technol., 12, 317 (2015); https://doi.org/10.1007/s13762-013-0466-y.
K.K. Nanda, W.D. Blincoe, L.R. Allain, W.P. Wuelfing and P.A. Harmon, J. Pharm. Sci., 106, 1347 (2017); https://doi.org/10.1016/j.xphs.2017.01.025.
K.A. Attia, N.M. El-Abassawi, A. El-Olemy and A.H. Abdelazim, New J. Chem., 42, 995 (2018); https://doi.org/10.1039/C7NJ03809G.
M. Markiewicz, C. Jungnickel, S. Stolte, A. Bialk-Bielinska, J. Kumirska and W. Mrozik, J. Hazard. Mater., 324, 428 (2017); https://doi.org/10.1016/j.jhazmat.2016.11.008.
S. Edoardo and C. Rosalia, J. Cent. Nerv. Syst. Dis., 3, 27 (2011).
M. del P. Corena-McLeod, A. Oliveros, C. Charlesworth, B. Madden, Y.Q. Liang, M. Boules, A. Shaw, K. Williams and E. Richelson, Brain Res., 1233, 8 (2008); https://doi.org/10.1016/j.brainres.2008.07.021.
R.B. Patel, M.R. Patel, K.K. Bhatt and B.G. Patel, Anal. Methods, 2, 525 (2010); https://doi.org/10.1039/b9ay00276f.
N. Yasui-Furukori, M. Hidestrand, E. Spina, G. Facciola, M.G. Scordo and G. Tybring, Drug Metab. Dispos., 29, 1263 (2001).
V. Devra, A. Jain and S. Jain, World J. Pharm. Res., 4, 963 (2014).
D.S. Sanjay and U.B. Vijaya, J. Pharm. Res., 6, 39 (2013).
S.A. Jadhav, S.B. Landge, S.L. Jadhav, N.C. Niphade, S.R. Bembalkar and V.T. Mathad, Chromatogr. Res. Int., Article ID 929876 (2011); https://doi.org/10.4061/2011/929876.
L. Kotai, I. Gacs, I.E. Sajo, P.K. Sharma and K.K. Banerji, Trends Inorg. Chem., 11, 25 (2009).
J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F.T. Dickenson, Comprehensive Inorganic Chemistry, Pergamon Press Ltd.: New York, p. 771 (1975).
D.C. Bilehal, R.M. Kulkarni and S.T. Nandibewoor, Can. J. Chem., 79, 1926 (2001); https://doi.org/10.1139/v01-173.
L.N. Jattinagoudar, K.S. Byadagi, S.T. Nandibewoor and S.A. Chimatadar, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 45, 1138 (2015); https://doi.org/10.1080/15533174.2013.862684.
C. Walling, Free Radicals in Solution, Academic Press: New York, p. 38 (1957).
Z.D. Bugarcic, S.T. Nandibewoor, M.S.A. Hamza, F. Heinemann and R. van Eldik, J. Chem. Soc., Dalton Trans., 2984 (2006); https://doi.org/10.1039/B516771J.
S.A. Farokhi and S.T. Nandibewoor, Tetrahedron, 59, 7595 (2003); https://doi.org/10.1016/S0040-4020(03)01148-7.