Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Formation Constants of Mixed Ligand Complexes of Anti-Inflammatory Drug Piroxicam and Some Bioligands with Copper(II)
Corresponding Author(s) : Amal M. Al-Mohaimeed
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
The formation constants of various complexes of copper(II) with anti-inflammatory drug piroxicam (P) as primary ligand and some bioligands such as L-serine, L-tyrosine, L-threonine as secondary ligand have been determined pH metrically at 25 ºC and I = 0.1 M NaNO3. The results suggest that the formation of Cu(P)L and Cu(P)(LH-1) species in the pH range of 5-12. The values of Δ log10 K, percentage of relative stabilization and log X were evaluated and discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Brayfield, Piroxicam, In: Martindale: The Complete Drug Reference, Pharmaceutical Press: London, UK (2014).
- F. Conforti, S. Sosa, M. Marrelli, F. Menichini, G.A. Statti, D. Uzunov, A. Tubaro and F. Menichinia, Food Chem., 112, 587 (2009); https://doi.org/10.1016/j.foodchem.2008.06.013.
- M.A. Chowdhury, K.R.A. Abdellatif, Y. Don, D. Das, M.R. Suresh and E. Knaus, J. Med. Chem., 52, 1525 (2009); https://doi.org/10.1021/jm8015188.
- M. Kobelnik, D.L. Cassimiro, C.A. Ribeiro, D.S. Dias and M.S. Crespi, J. Therm. Anal. Calorim., 102, 1167 (2010); https://doi.org/10.1007/s10973-010-0787-8.
- M. Kobelnik, D.L. Cassimiro, C.A. Ribeiro, J.M.V. Capela, D.S. Dias and M.S. Crespi, J. Therm. Anal. Calorim., 108, 213 (2012); https://doi.org/10.1007/s10973-011-1416-x.
- D. Kovala-Demertzi, D. Mentzafos and A. Terzis, Polyhedron, 12, 1361 (1993); https://doi.org/10.1016/S0277-5387(00)84327-2.
- M.H. Soliman, G.G. Mohamed and E.A. Mohamed, J. Therm. Anal. Calorim., 99, 639 (2010); https://doi.org/10.1007/s10973-009-0421-9.
- G.E. Jackson, P.M. May and D.R. Williams, J. Inorg. Nucl. Chem., 40, 1227 (1978); https://doi.org/10.1016/0022-1902(78)80544-2.
- A. Leo, C. Hansch and D. Elkins, Chem. Rev., 71, 525 (1971); https://doi.org/10.1021/cr60274a001.
- T.X. Xiang and B.D. Anderson, J. Membr. Biol., 140, 111 (1994); https://doi.org/10.1007/BF00232899.
- H. Hadadzadeh, M. Salimi, M. Weil, Z. Jannesari, F. Darabi, K. Abdi, A.D. Khalaji, S. Sardari and R. Ahangari, J. Mol. Struct., 1022, 172 (2012); https://doi.org/10.1016/j.molstruc.2012.04.094.
- F. Darabi, H. Hadadzadeh, M. Ebrahimi, T. Khayamian and H.A. Rudbari, Inorg. Chim. Acta, 409, 379 (2014); https://doi.org/10.1016/j.ica.2013.09.035.
- Z. Jannesari, H. Hadadzadeh, Z. Amirghofran, J. Simpson, T. Khayamian and B. Maleki, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1119 (2015); https://doi.org/10.1016/j.saa.2014.09.136.
- W. Scott and H. Furman, Standard Methods of Chemical analysis, Van Nostrand: New York, edn 6 (1962).
- P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3.
- L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4.
- J.C. Pessoa, L F V. Boas and R.D. Gillard, Polyhedron, 8, 1173 (1989); https://doi.org/10.1016/S0277-5387(00)81139-0.
- M.S. Nair, P.T. Arasu, M.S. Pillai and C. Natarajan, Talanta, 40, 1411 (1993); https://doi.org/10.1016/0039-9140(93)80219-H.
- A.A. El-Sherif and M.M. Shoukry, Inorg. Chim. Acta, 360, 473 (2007); https://doi.org/10.1016/j.ica.2006.07.108.
- A.A. El-Sherif, J. Solution Chem., 35, 1287 (2006); https://doi.org/10.1007/s10953-006-9062-9.
- D. Ivanova, V. Deneva, D. Nedeltcheva, F.S. Kamounah, G. Gergov, P.E. Hansen, S. Kawauchi and L. Antonov, RSC Adv., 5, 31852 (2015); https://doi.org/10.1039/C5RA03653D.
- R.N. Sylva and M.R. Davidson, Dalton Trans., 2, 232 (1979); https://doi.org/10.1039/dt9790000232.
- L. Lomozik, A. Gasowska and L. Bolewski, J. Chem. Soc., Perkin Trans. II, 1161 (1997); https://doi.org/10.1039/a607656d.
- L. Lomozik and A. Gasowska, J. Inorg. Biochem., 62, 103 (1996); https://doi.org/10.1016/0162-0134(95)00120-4.
- L. Lomozik, A. Gasowska and G. Krzysko, J. Inorg. Biochem., 100, 1781 (2006); https://doi.org/10.1016/j.jinorgbio.2006.06.009.
- M.C. Lim, Inorg. Chem., 20, 1377 (1981); https://doi.org/10.1021/ic50219a009.
- P. Grenouillet, R.P. Martin, A. Rossi and M. Ptak, Biochim. Biophys. Acta, 322, 185 (1973); https://doi.org/10.1016/0005-2795(73)90292-4.
- H. Sigel, B.E. Fischer and E. Farkas, Inorg. Chem., 22, 925 (1983); https://doi.org/10.1021/ic00148a017.
- B.E. Fischer and H. Sigel, Inorg. Chem., 18, 425 (1979); https://doi.org/10.1021/ic50192a047.
- R.B. Martin and R.J. Prados, J. Inorg. Nucl. Chem., 36, 1665 (1974); https://doi.org/10.1016/0022-1902(74)80643-3.
- A. Odani and O. Yamauchi, Inorg. Chim. Acta, 93, 13 (1984); https://doi.org/10.1016/S0020-1693(00)85951-4.
- H. Sigel, Metal Ions in Biological Systems, Marcel Dekker: New York, vol. 2 (1973).
- R.P. Bonomo, S. Musumeci, E. Rizzarelli and S. Sammartano, Inorg. Chim. Acta, 14, 251 (1975); https://doi.org/10.1016/S0020-1693(00)85750-3.
- M.M. Khalil, A.E. Radalla, F. Qasem and R. Khaled, Korean J. Chem. Eng., 31, 109 (2014); https://doi.org/10.1007/s11814-013-0181-x.
References
A. Brayfield, Piroxicam, In: Martindale: The Complete Drug Reference, Pharmaceutical Press: London, UK (2014).
F. Conforti, S. Sosa, M. Marrelli, F. Menichini, G.A. Statti, D. Uzunov, A. Tubaro and F. Menichinia, Food Chem., 112, 587 (2009); https://doi.org/10.1016/j.foodchem.2008.06.013.
M.A. Chowdhury, K.R.A. Abdellatif, Y. Don, D. Das, M.R. Suresh and E. Knaus, J. Med. Chem., 52, 1525 (2009); https://doi.org/10.1021/jm8015188.
M. Kobelnik, D.L. Cassimiro, C.A. Ribeiro, D.S. Dias and M.S. Crespi, J. Therm. Anal. Calorim., 102, 1167 (2010); https://doi.org/10.1007/s10973-010-0787-8.
M. Kobelnik, D.L. Cassimiro, C.A. Ribeiro, J.M.V. Capela, D.S. Dias and M.S. Crespi, J. Therm. Anal. Calorim., 108, 213 (2012); https://doi.org/10.1007/s10973-011-1416-x.
D. Kovala-Demertzi, D. Mentzafos and A. Terzis, Polyhedron, 12, 1361 (1993); https://doi.org/10.1016/S0277-5387(00)84327-2.
M.H. Soliman, G.G. Mohamed and E.A. Mohamed, J. Therm. Anal. Calorim., 99, 639 (2010); https://doi.org/10.1007/s10973-009-0421-9.
G.E. Jackson, P.M. May and D.R. Williams, J. Inorg. Nucl. Chem., 40, 1227 (1978); https://doi.org/10.1016/0022-1902(78)80544-2.
A. Leo, C. Hansch and D. Elkins, Chem. Rev., 71, 525 (1971); https://doi.org/10.1021/cr60274a001.
T.X. Xiang and B.D. Anderson, J. Membr. Biol., 140, 111 (1994); https://doi.org/10.1007/BF00232899.
H. Hadadzadeh, M. Salimi, M. Weil, Z. Jannesari, F. Darabi, K. Abdi, A.D. Khalaji, S. Sardari and R. Ahangari, J. Mol. Struct., 1022, 172 (2012); https://doi.org/10.1016/j.molstruc.2012.04.094.
F. Darabi, H. Hadadzadeh, M. Ebrahimi, T. Khayamian and H.A. Rudbari, Inorg. Chim. Acta, 409, 379 (2014); https://doi.org/10.1016/j.ica.2013.09.035.
Z. Jannesari, H. Hadadzadeh, Z. Amirghofran, J. Simpson, T. Khayamian and B. Maleki, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1119 (2015); https://doi.org/10.1016/j.saa.2014.09.136.
W. Scott and H. Furman, Standard Methods of Chemical analysis, Van Nostrand: New York, edn 6 (1962).
P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3.
L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4.
J.C. Pessoa, L F V. Boas and R.D. Gillard, Polyhedron, 8, 1173 (1989); https://doi.org/10.1016/S0277-5387(00)81139-0.
M.S. Nair, P.T. Arasu, M.S. Pillai and C. Natarajan, Talanta, 40, 1411 (1993); https://doi.org/10.1016/0039-9140(93)80219-H.
A.A. El-Sherif and M.M. Shoukry, Inorg. Chim. Acta, 360, 473 (2007); https://doi.org/10.1016/j.ica.2006.07.108.
A.A. El-Sherif, J. Solution Chem., 35, 1287 (2006); https://doi.org/10.1007/s10953-006-9062-9.
D. Ivanova, V. Deneva, D. Nedeltcheva, F.S. Kamounah, G. Gergov, P.E. Hansen, S. Kawauchi and L. Antonov, RSC Adv., 5, 31852 (2015); https://doi.org/10.1039/C5RA03653D.
R.N. Sylva and M.R. Davidson, Dalton Trans., 2, 232 (1979); https://doi.org/10.1039/dt9790000232.
L. Lomozik, A. Gasowska and L. Bolewski, J. Chem. Soc., Perkin Trans. II, 1161 (1997); https://doi.org/10.1039/a607656d.
L. Lomozik and A. Gasowska, J. Inorg. Biochem., 62, 103 (1996); https://doi.org/10.1016/0162-0134(95)00120-4.
L. Lomozik, A. Gasowska and G. Krzysko, J. Inorg. Biochem., 100, 1781 (2006); https://doi.org/10.1016/j.jinorgbio.2006.06.009.
M.C. Lim, Inorg. Chem., 20, 1377 (1981); https://doi.org/10.1021/ic50219a009.
P. Grenouillet, R.P. Martin, A. Rossi and M. Ptak, Biochim. Biophys. Acta, 322, 185 (1973); https://doi.org/10.1016/0005-2795(73)90292-4.
H. Sigel, B.E. Fischer and E. Farkas, Inorg. Chem., 22, 925 (1983); https://doi.org/10.1021/ic00148a017.
B.E. Fischer and H. Sigel, Inorg. Chem., 18, 425 (1979); https://doi.org/10.1021/ic50192a047.
R.B. Martin and R.J. Prados, J. Inorg. Nucl. Chem., 36, 1665 (1974); https://doi.org/10.1016/0022-1902(74)80643-3.
A. Odani and O. Yamauchi, Inorg. Chim. Acta, 93, 13 (1984); https://doi.org/10.1016/S0020-1693(00)85951-4.
H. Sigel, Metal Ions in Biological Systems, Marcel Dekker: New York, vol. 2 (1973).
R.P. Bonomo, S. Musumeci, E. Rizzarelli and S. Sammartano, Inorg. Chim. Acta, 14, 251 (1975); https://doi.org/10.1016/S0020-1693(00)85750-3.
M.M. Khalil, A.E. Radalla, F. Qasem and R. Khaled, Korean J. Chem. Eng., 31, 109 (2014); https://doi.org/10.1007/s11814-013-0181-x.