Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison Method to Estimate Surface Directional Thermal Conductivity of Ultrathin Graphite Thermal Sheets
Corresponding Author(s) : Won Kweon Jang
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
The steady state comparison method providing a simple and fast estimation for the thermal conductivity of ultrathin thermal sheet is suggested. The surface directional thermal conductivity of ultrathin graphite sheet was estimated by the steady state comparison method. The estimation was performed as a function of temperature profile along the heat spreading surface direction. At steady state condition, the temperature difference ratio of copper and aluminum ultrathin thermal sheets at the same distance from heat source showed the same value of inverse ratio of thermal conductivities of those two materials. We could find the surface directional thermal conductivity of ultrathin graphite sheet by the comparison method at the steady state. The estimated value of the surface directional thermal conductivity of ultrathin graphite thermal sheet was very close to the pre-reported value of it.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Monier-Vinard, M.-N. Nguyen, N. Laraqi, V. Bissuel and O. Daniel Steady State Temperature Solution for Early Design of Annealed Pyrolytic Graphite Heat Spreader: Full Results, 15th IEEE ITHERM Conference, p. 945 (2016); https://doi.org/10.1109/ITHERM.2016.7517647.
- A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller and C. Mejuto, IEEE Trans. Ind. Electron., 56, 871 (2009); https://doi.org/10.1109/TIE.2008.2011622.
- M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley and R.A. Reynolds III, Thermal Performance of Natural Graphite Heat Spreaders, Proceedings of IPACK 2005, 17-22 July (2005).
- C.-C. Lee, H.T. Hsu, M.C. Huang and H.H. Huang, Appl. Mech. Mater., 540, 126 (2014); https://doi.org/10.4028/www.scientific.net/AMM.540.126.
- S.K. Kim, IEEE Trans. Compon. Packag. Manuf. Technol., 2, 1838 (2012); https://doi.org/10.1109/TCPMT.2012.2212901.
- G. A. Beck, A.A. Carter and J.F. Morris, Measurements of the Thermal Conductivity of Pyrolitic Graphite Substrates for use in SCT Modules’, ATL-INDET-98-221 (1998).
- C.A Heusch, H.-G Moser and A. Kholodenko, Nucl. Instr. Methods Phys. Res. A, 480, 463 (2002); https://doi.org/10.1016/S0168-9002(01)01208-6.
References
E. Monier-Vinard, M.-N. Nguyen, N. Laraqi, V. Bissuel and O. Daniel Steady State Temperature Solution for Early Design of Annealed Pyrolytic Graphite Heat Spreader: Full Results, 15th IEEE ITHERM Conference, p. 945 (2016); https://doi.org/10.1109/ITHERM.2016.7517647.
A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller and C. Mejuto, IEEE Trans. Ind. Electron., 56, 871 (2009); https://doi.org/10.1109/TIE.2008.2011622.
M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley and R.A. Reynolds III, Thermal Performance of Natural Graphite Heat Spreaders, Proceedings of IPACK 2005, 17-22 July (2005).
C.-C. Lee, H.T. Hsu, M.C. Huang and H.H. Huang, Appl. Mech. Mater., 540, 126 (2014); https://doi.org/10.4028/www.scientific.net/AMM.540.126.
S.K. Kim, IEEE Trans. Compon. Packag. Manuf. Technol., 2, 1838 (2012); https://doi.org/10.1109/TCPMT.2012.2212901.
G. A. Beck, A.A. Carter and J.F. Morris, Measurements of the Thermal Conductivity of Pyrolitic Graphite Substrates for use in SCT Modules’, ATL-INDET-98-221 (1998).
C.A Heusch, H.-G Moser and A. Kholodenko, Nucl. Instr. Methods Phys. Res. A, 480, 463 (2002); https://doi.org/10.1016/S0168-9002(01)01208-6.