Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Conversion of Lignin: Studies on Oxidation of Lignin Model Phenolic Monomer over CoMCM-41 and CoMCM-48 Catalysts
Corresponding Author(s) : S.K. Badamali
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
The present study focussed on investigation of the potentiality of cobalt containing mesoporous material (M41S) as a robust heterogeneous catalyst for the oxidation of lignin model phenolic compound. Cobalt containing MCM-41 and MCM-48 were prepared under hydrothermal condition and characterized by various spectroscopic and analytical techniques. Formation of well ordered hexagonal and cubic mesopore structures of MCMs, containing cobalt in the silicate framework was inferred from XRD, TG-DTA and N2 adsorption-desorption studies. DR UV-visible spectral analysis revealed existence of Co(II) and Co(III) in the tetrahedral framework. The oxidative ability of CoMCMs were studied for the lignin model phenolic monomer, 1-(4-hydroxy-3-methoxyphenoxy)-ethanol, under mild conditions using environmentally benign H2O2 as the oxidant. The catalytic results showed that under optimum reaction conditions, apocynol undergoes selective oxidation yielding 2-methoxybenzoquinone and acetovanillone. CoMCM-41 was found to be more selective towards acetovanillone, on the contrary, CoMCM-48 was better catalyst for 2-methoxybenzoquinone yield.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius and B.M. Weckhuysen, Chem. Rev., 110, 3552 (2010); https://doi.org/10.1021/cr900354u.
- P.J. Deuss, M. Scott, F. Tran, N.J. Westwood, J.G. de Vries and K. Barta, J. Am. Chem. Soc., 137, 7456 (2015); https://doi.org/10.1021/jacs.5b03693.
- A. Rahimi,A. Ulbrich, J.J. Coon and S.S. Stahl, Nature, 515, 249 (2014); https://doi.org/10.1038/nature13867.
- S. Jia, B.J. Cox, X. Guo, Z.C. Zhang and J.G. Ekerdt, Ind. Eng. Chem. Res., 50, 849 (2011); https://doi.org/10.1021/ie101884h.
- J.C. Wozniak, D.R. Dimmel and E.W. Malcom, Institute of Paper Science and Technology, Paper series No. 349, pp. 1-62 (1990).
- D. Cedeno and J.J. Bozell, Tetrahedron Lett., 53, 2380 (2012); https://doi.org/10.1016/j.tetlet.2012.02.093.
- C. Canevali, M. Orlandi, L. Pardi, B. Rindone, R. Scotti, J. Sipila and F. Morazzoni, J. Chem. Soc., Dalton Trans., 3007 (2002); https://doi.org/10.1039/b203386k.
- C. Crestini, A. Pastorini and P. Tagliatesta, J. Mol. Catal. Chem., 208, 195 (2004); https://doi.org/10.1016/j.molcata.2003.07.015.
- S.K. Badamali, R. Luque, J.H. Clark and S.W. Breeden,Catal. Commun., 12, 993 (2011); https://doi.org/10.1016/j.catcom.2011.02.025.
- S.K. Badamali, R. Luque, J.H. Clark and S.W. Breeden,Catal. Commun., 10, 1010 (2009); https://doi.org/10.1016/j.catcom.2008.12.051.
- K. Schumacher, M. Grün and K.K. Unger, Micropor. Mesopor. Mater., 27, 201 (1999); https://doi.org/10.1016/S1387-1811(98)00254-6.
- W. Zhan, Y. Guo, Y. Wang, X. Liu, Y. Guo, Y. Wang, Z. Zhang and G. Lu, J. Phys. Chem. B, 111, 12103 (2007); https://doi.org/10.1021/jp074521l.
- S. Gomez, L.J. Garces, J. Villegas, R. Ghosh, O. Giraldo and S.L. Suib, J. Catal., 233, 60 (2005); https://doi.org/10.1016/j.jcat.2005.04.015.
- K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark and K.K. Unger, Langmuir, 16, 4648 (2000); https://doi.org/10.1021/la991595i.
- A. Corma, A. Martínez, V.M. Soria and J.B. Montón, J. Catal., 153, 25 (1995); https://doi.org/10.1006/jcat.1995.1104.
- J. Rathouský, A. Zukal, O. Franke and G. Schulz-Ekloff, J. Chem. Soc., Faraday Trans., 91, 937 (1995); https://doi.org/10.1039/FT9959100937.
- A. Corma, Chem. Rev., 97, 2373 (1997); https://doi.org/10.1021/cr960406n.
- D.T. On, D. Desplantier-Giscard, C. Danumah and S. Kaliaguine, Appl. Catal. A, 222, 299 (2001); https://doi.org/10.1016/S0926-860X(01)00842-0.
- H. Li, S. Wang, F. Ling and J. Li, J. Mol. Catal. Chem., 244, 33 (2006); https://doi.org/10.1016/j.molcata.2005.08.050.
- S.S. Bhoware, K.R. Kamble and A.P. Singh, Catal. Lett., 133, 106 (2009); https://doi.org/10.1007/s10562-009-0162-1.
- S.V. Sirotin and I.F. Moskovskaya, Petrol. Chem., 49, 99 (2009); https://doi.org/10.1134/S0965544109010186.
- R. Sadual, S.K. Badamali, S.E. Dapurkar and R.K. Singh, World J. Nanosci. Eng., 5, 88 (2015); https://doi.org/10.4236/wjnse.2015.53011.
- R. Sadual, S.K. Badamali and R.K. Singh, Adv. Por. Mater., 2, 48 (2014); https://doi.org/10.1166/apm.2014.1044.
- S.K. Badamali, J.H. Clark and S.W. Breeden, Catal. Commun., 9, 2168 (2008); https://doi.org/10.1016/j.catcom.2008.04.012.
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, Wiley: New York, edn 6 (1999).
- V.P. Shiralkar, C.H. Saldarriaga, J.O. Perez, A. Clearfield, M. Chen, R.G. Anthony and J.A. Donohue, Zeolites, 9, 474 (1989); https://doi.org/10.1016/0144-2449(89)90041-9.
- V. Alfredsson and M.W. Anderson, Chem. Mater., 8, 1141 (1996); https://doi.org/10.1021/cm950568k.
- C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature, 359, 710 (1992); https://doi.org/10.1038/359710a0.
- S.C. Laha, P. Mukherjee, S.R. Sainkar and R. Kumar, J. Catal., 207, 213 (2002); https://doi.org/10.1006/jcat.2002.3516.
- J. Panpranot, S. Kaewkun, P. Praserthdam and J.G. Goodwin Jr., Catal. Lett., 91, 95 (2003); https://doi.org/10.1023/B:CATL.0000006323.17873.78.
- P.J. Branton, P.G. Hall and K.S.W. Sing, J. Chem. Soc. Chem. Commun., 1257 (1993); https://doi.org/10.1039/c39930001257.
- S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press: New York, edn 2 (1982).
- J. Xu, Z. Luan, H. He, W. Zhou and L. Kevan, Chem. Mater., 10, 3690 (1998); https://doi.org/10.1021/cm980440d.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603.
- U.S. Taralkar, P. Kalita, R. Kumar and P.N. Joshi, J. Appl. Catal. A, 358, 88 (2009); https://doi.org/10.1016/j.apcata.2009.02.001.
- D. Kaucky, J. Dedecek and B. Wichterlova, Micropor. Mesopor. Mater., 31, 75 (1999); https://doi.org/10.1016/S1387-1811(99)00058-X.
- S. Lim, D. Ciuparu, Y.H. Yang, G. Du, L.D. Pfefferle and G.L. Haller, Micropor. Mesopor. Mater., 101, 200 (2007); https://doi.org/10.1016/j.micromeso.2006.11.002.
- Q. Zhao, J.Y. Chu, T.S. Jiang and H.B. Yin, Colloids Surf. A Physicochem. Eng. Asp., 301, 388 (2007); https://doi.org/10.1016/j.colsurfa.2007.01.002.
- E.M. Flanigen, H. Khatami and H.A. Szymanski, eds.: E.M. Flanigen and L.B. Sand, Molecular Sieve Zeolites, ACS Advance Chemical Series vol. 101, American Chemical Society, Wasington, DC, p. 201 (1971).
- C.Y. Chen, H.X. Li and M.E. Davis, Micropor. Mater., 2, 17 (1993); https://doi.org/10.1016/0927-6513(93)80058-3.
- S. Patai and Z. Rappoport, The Chemistry of Quinonoid Compounds, Wiley: New York, vol. 2 (1988).
- H.R. Bjørsvik and L. Liguori, Org. Proc. Res. Dev., 6, 279 (2002); https://doi.org/10.1021/op010087o.
- R. Sheldon, eds.: R.A. Sheldon, and J.K. Kochi, Metal Catalysed Oxidation of Organic Compound, Academic Press, New York, p. 373 (1981).
- T. Baskaran, R. Kumaravel, J. Christopher and A. Sakthivel, RSC Adv., 4, 11188 (2014); https://doi.org/10.1039/c3ra46703a.
References
J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius and B.M. Weckhuysen, Chem. Rev., 110, 3552 (2010); https://doi.org/10.1021/cr900354u.
P.J. Deuss, M. Scott, F. Tran, N.J. Westwood, J.G. de Vries and K. Barta, J. Am. Chem. Soc., 137, 7456 (2015); https://doi.org/10.1021/jacs.5b03693.
A. Rahimi,A. Ulbrich, J.J. Coon and S.S. Stahl, Nature, 515, 249 (2014); https://doi.org/10.1038/nature13867.
S. Jia, B.J. Cox, X. Guo, Z.C. Zhang and J.G. Ekerdt, Ind. Eng. Chem. Res., 50, 849 (2011); https://doi.org/10.1021/ie101884h.
J.C. Wozniak, D.R. Dimmel and E.W. Malcom, Institute of Paper Science and Technology, Paper series No. 349, pp. 1-62 (1990).
D. Cedeno and J.J. Bozell, Tetrahedron Lett., 53, 2380 (2012); https://doi.org/10.1016/j.tetlet.2012.02.093.
C. Canevali, M. Orlandi, L. Pardi, B. Rindone, R. Scotti, J. Sipila and F. Morazzoni, J. Chem. Soc., Dalton Trans., 3007 (2002); https://doi.org/10.1039/b203386k.
C. Crestini, A. Pastorini and P. Tagliatesta, J. Mol. Catal. Chem., 208, 195 (2004); https://doi.org/10.1016/j.molcata.2003.07.015.
S.K. Badamali, R. Luque, J.H. Clark and S.W. Breeden,Catal. Commun., 12, 993 (2011); https://doi.org/10.1016/j.catcom.2011.02.025.
S.K. Badamali, R. Luque, J.H. Clark and S.W. Breeden,Catal. Commun., 10, 1010 (2009); https://doi.org/10.1016/j.catcom.2008.12.051.
K. Schumacher, M. Grün and K.K. Unger, Micropor. Mesopor. Mater., 27, 201 (1999); https://doi.org/10.1016/S1387-1811(98)00254-6.
W. Zhan, Y. Guo, Y. Wang, X. Liu, Y. Guo, Y. Wang, Z. Zhang and G. Lu, J. Phys. Chem. B, 111, 12103 (2007); https://doi.org/10.1021/jp074521l.
S. Gomez, L.J. Garces, J. Villegas, R. Ghosh, O. Giraldo and S.L. Suib, J. Catal., 233, 60 (2005); https://doi.org/10.1016/j.jcat.2005.04.015.
K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark and K.K. Unger, Langmuir, 16, 4648 (2000); https://doi.org/10.1021/la991595i.
A. Corma, A. Martínez, V.M. Soria and J.B. Montón, J. Catal., 153, 25 (1995); https://doi.org/10.1006/jcat.1995.1104.
J. Rathouský, A. Zukal, O. Franke and G. Schulz-Ekloff, J. Chem. Soc., Faraday Trans., 91, 937 (1995); https://doi.org/10.1039/FT9959100937.
A. Corma, Chem. Rev., 97, 2373 (1997); https://doi.org/10.1021/cr960406n.
D.T. On, D. Desplantier-Giscard, C. Danumah and S. Kaliaguine, Appl. Catal. A, 222, 299 (2001); https://doi.org/10.1016/S0926-860X(01)00842-0.
H. Li, S. Wang, F. Ling and J. Li, J. Mol. Catal. Chem., 244, 33 (2006); https://doi.org/10.1016/j.molcata.2005.08.050.
S.S. Bhoware, K.R. Kamble and A.P. Singh, Catal. Lett., 133, 106 (2009); https://doi.org/10.1007/s10562-009-0162-1.
S.V. Sirotin and I.F. Moskovskaya, Petrol. Chem., 49, 99 (2009); https://doi.org/10.1134/S0965544109010186.
R. Sadual, S.K. Badamali, S.E. Dapurkar and R.K. Singh, World J. Nanosci. Eng., 5, 88 (2015); https://doi.org/10.4236/wjnse.2015.53011.
R. Sadual, S.K. Badamali and R.K. Singh, Adv. Por. Mater., 2, 48 (2014); https://doi.org/10.1166/apm.2014.1044.
S.K. Badamali, J.H. Clark and S.W. Breeden, Catal. Commun., 9, 2168 (2008); https://doi.org/10.1016/j.catcom.2008.04.012.
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, Wiley: New York, edn 6 (1999).
V.P. Shiralkar, C.H. Saldarriaga, J.O. Perez, A. Clearfield, M. Chen, R.G. Anthony and J.A. Donohue, Zeolites, 9, 474 (1989); https://doi.org/10.1016/0144-2449(89)90041-9.
V. Alfredsson and M.W. Anderson, Chem. Mater., 8, 1141 (1996); https://doi.org/10.1021/cm950568k.
C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature, 359, 710 (1992); https://doi.org/10.1038/359710a0.
S.C. Laha, P. Mukherjee, S.R. Sainkar and R. Kumar, J. Catal., 207, 213 (2002); https://doi.org/10.1006/jcat.2002.3516.
J. Panpranot, S. Kaewkun, P. Praserthdam and J.G. Goodwin Jr., Catal. Lett., 91, 95 (2003); https://doi.org/10.1023/B:CATL.0000006323.17873.78.
P.J. Branton, P.G. Hall and K.S.W. Sing, J. Chem. Soc. Chem. Commun., 1257 (1993); https://doi.org/10.1039/c39930001257.
S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press: New York, edn 2 (1982).
J. Xu, Z. Luan, H. He, W. Zhou and L. Kevan, Chem. Mater., 10, 3690 (1998); https://doi.org/10.1021/cm980440d.
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603.
U.S. Taralkar, P. Kalita, R. Kumar and P.N. Joshi, J. Appl. Catal. A, 358, 88 (2009); https://doi.org/10.1016/j.apcata.2009.02.001.
D. Kaucky, J. Dedecek and B. Wichterlova, Micropor. Mesopor. Mater., 31, 75 (1999); https://doi.org/10.1016/S1387-1811(99)00058-X.
S. Lim, D. Ciuparu, Y.H. Yang, G. Du, L.D. Pfefferle and G.L. Haller, Micropor. Mesopor. Mater., 101, 200 (2007); https://doi.org/10.1016/j.micromeso.2006.11.002.
Q. Zhao, J.Y. Chu, T.S. Jiang and H.B. Yin, Colloids Surf. A Physicochem. Eng. Asp., 301, 388 (2007); https://doi.org/10.1016/j.colsurfa.2007.01.002.
E.M. Flanigen, H. Khatami and H.A. Szymanski, eds.: E.M. Flanigen and L.B. Sand, Molecular Sieve Zeolites, ACS Advance Chemical Series vol. 101, American Chemical Society, Wasington, DC, p. 201 (1971).
C.Y. Chen, H.X. Li and M.E. Davis, Micropor. Mater., 2, 17 (1993); https://doi.org/10.1016/0927-6513(93)80058-3.
S. Patai and Z. Rappoport, The Chemistry of Quinonoid Compounds, Wiley: New York, vol. 2 (1988).
H.R. Bjørsvik and L. Liguori, Org. Proc. Res. Dev., 6, 279 (2002); https://doi.org/10.1021/op010087o.
R. Sheldon, eds.: R.A. Sheldon, and J.K. Kochi, Metal Catalysed Oxidation of Organic Compound, Academic Press, New York, p. 373 (1981).
T. Baskaran, R. Kumaravel, J. Christopher and A. Sakthivel, RSC Adv., 4, 11188 (2014); https://doi.org/10.1039/c3ra46703a.