Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Unique Nickel(II) Carboxylates and Their Coordination Complexes
Corresponding Author(s) : Baljit Singh
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Direct anodic dissolution of nickel metal and cathodic reduction of carboxylic acids (RCOOH) in acetonitrile has proved to be a simple and efficient one-step route to synthesize unique polymeric nickel(II) carboxylate complexes, {Ni(OOCR)2}n in H-type glass Pyrex cell. When the oxidation was carried out in the presence of neutral ligands (L) such as 2,2’-bipyridyl or 1,10-phenanthroline, the complexes of type {Ni(OOCR)2.L}n were obtained. Tetrabutylammonium chloride has been used as a supporting electrolyte in order to increase the electrolytic conductivity of the electrochemical system which in turn affects the current efficiency, cell voltage and energy consumption in the electrolytic cell. The complexes have been characterized by vibrational spectra, CHN elemental analysis, solubility and melting points shows a good agreement with the structure. The result also shows that the direct electrochemical synthetic technique has high current efficiency, extra purity and yield.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Doménech, M.T. Doménech-Carbó, L. Osete-Cortina and N. Montoya, Micropor. Mesopor. Mater., 166, 123 (2013); https://doi.org/10.1016/j.micromeso.2012.04.031.
- L.M. González-Barcia, M.J. Romero,A.M. González Noya, M.R. Bermejo, M. Maneiro, G. Zaragoza and R. Pedrido,Inorg. Chem., 55, 7823 (2016); https://doi.org/10.1021/acs.inorgchem.6b01362.
- N. Nordin, W.Z. Samad, M.R. Yusop and M.R. Othman, Malays. J. Anal. Sci., 19, 236 (2015).
- D.A. Garnovskii, S.I. Levchenkov, G.G. Aleksandrov, V.G. Vlasenko, Y.V. Zubavichus, A.I. Uraev and A.S. Burlov, Russ. J. Coord. Chem., 43, 156 (2017); https://doi.org/10.1134/S1070328417030010.
- S. Cabaleiro, J. Castro, E. Vázquez-López, J.A. García-Vázquez, J. Romero and A. Sousa, Polyhedron, 18, 1669 (1999); https://doi.org/10.1016/S0277-5387(99)00049-2.
- V.Yu. Frolov, S.N. Bolotin and V.T. Panyshkin, Russ. J. Appl. Chem., 78, 897 (2005); https://doi.org/10.1007/s11167-005-0416-7.
- S.R. Long and J.J. Lagowski, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 813 (2007).
- J.E. Dick and D. Chong, Org. Chem. Curr. Res, 1, (2012); https://doi.org/10.4172/2161-0401.1000e113.
- T. Hudlicky, C.D. Claeboe, L.E. Brammer, L. Koroniak, G. Butora and I. Ghiviriga, J. Org. Chem., 64, 4909 (1999); https://doi.org/10.1021/jo990382v.
- E.J. Horn, B.R. Rosen and P.S. Baran, ACS Cent. Sci., 2, 302 (2016); https://doi.org/10.1021/acscentsci.6b00091.
- R. Francke, Beilstein J. Org. Chem., 10, 2858 (2014); https://doi.org/10.3762/bjoc.10.303.
- D.G. Yakhvarov, A.F. Khusnuriyalova and O.G. Sinyashin, J. Organomet., 33, 4574 (2014); https://doi.org/10.1021/om500100q.
- L.G. Chatten, J. Pharm. Biomed. Anal., 1, 491 (1983); https://doi.org/10.1016/0731-7085(83)80062-4.
- F.C. de Abreu, P.A. de L. Ferraz and M.O.F. Goulart, J. Braz. Chem. Soc., 13, 19 (2002); https://doi.org/10.1590/S0103-50532002000100004.
- L.M. Borland and A.C. Michael, Electrochemical Methods for Neuroscience, CRC Press, Taylor & Francis (2007).
- H. Naohara, S. Ye and K. Uosaki, J. Phys. Chem. B, 102, 4366 (1998); https://doi.org/10.1021/jp980624f.
- G.-R. Li, H. Xu, X.-F. Lu, J.-X. Feng, Y.-X. Tong and C.-Y. Su,Nanoscale, 5, 4056 (2013); https://doi.org/10.1039/c3nr00607g.
- R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x.
- M.V. Roldán, N. Pellegri and O. de Sanctis, J. Nanopart., Article ID 524150 (2013); https://doi.org/10.1155/2013/524150.
- C.J. Huang, Y.H. Wang, P.H. Chiu, M.C. Shih and T.H. Meen, Mater. Lett., 60, 1896 (2006); https://doi.org/10.1016/j.matlet.2005.12.045.
- G. She, X. Zhang, W. Shi, Y. Cai, N. Wang, P. Liu and D. Chen, Cryst. Growth Des., 8, 1789 (2008); https://doi.org/10.1021/cg7008623.
- N. Uddin, M. Sirajuddin, N. Uddin, M. Tariq, H. Ullah, S. Ali, S.A. Tirmizi and A.R. Khan, Spectrochim. Acta Mol. Biomol. Spectrosc., 140, 563 (2015); https://doi.org/10.1016/j.saa.2014.12.062.
- G.H. Ming, Z.G. Liang and W.X. Yong, Asian J. Chem., 23, 4819 (2011).
- P. Drabina, P. Funk, A. Ruzicka, J. Hanusek and M. Sedlak, Transit. Metal Chem., 35, 363 (2010); https://doi.org/10.1007/s11243-010-9336-3.
- A. Mesbah, S. Jacques, E. Rocca, M. François and J. Steinmetz, Eur. J. Inorg. Chem., 2011, 1315 (2011); https://doi.org/10.1002/ejic.201001024.
- A.I. Vogel’s, Text Book of Quantitative Chemical Analysis, Longman Group UK, Ltd. (1989).
- V. Otero, D. Sanches, C. Montagner, M. Vilarigues, L. Carlyle, J.A. Lopes and M.J. Melo, J. Raman Spectrosc., 45, 1197 (2014); https://doi.org/10.1002/jrs.4520.
- K. Pachori, S. Malik and S. Wankhede, Res. J. Chem. Sci., 4, 75 (2014).
- O.B.A. Agbaje, A.A. Osowole, E.O. Malumi and S.M. Wakil, Res. Revs. J. Chem., 4, 1 (2015).
- M. Iqbal, S. Ali, N. Muhammad and M. Sohail,Polyhedron, 57, 83 (2013); https://doi.org/10.1016/j.poly.2013.04.020.
- D.A. Köse, H. Necefoglu and H. Icbudak, J. Coord. Chem., 61, 3508 (2008); https://doi.org/10.1080/00958970802074555.
- C.J. Athira, Y. Sindhu, M. Sujamol and K. Mohanan, J. Serb. Chem. Soc., 76, 249 (2011); https://doi.org/10.2298/JSC100414025A.
- A.T. Colak, F. Colak, P. Oztopcu-Vatan, D. Akduman, S. Kabadere and R. Uyar, Med. Chem. Res., 22, 4376 (2013); https://doi.org/10.1007/s00044-012-0446-7.
- V. Mathew, J. Joseph, S. Jacob and K.E. Abraham, Indian J. Pure Appl. Phys., 49, 21 (2011).
- J.R. Anacona and V.E. Marquez, Transition Met. Chem., 33, 579 (2008); https://doi.org/10.1007/s11243-008-9083-x.
- J.R. Anacona, V.E. Marquez and Y. Jimenez, J. Coord. Chem., 62, 1172 (2009); https://doi.org/10.1080/00958970802382768.
- D.J. Awad, F. Conrad, A. Koch, U. Schilde, A. Pöppl and P. Strauch, Inorg. Chim. Acta, 363, 1488 (2010); https://doi.org/10.1016/j.ica.2010.01.021.
References
A. Doménech, M.T. Doménech-Carbó, L. Osete-Cortina and N. Montoya, Micropor. Mesopor. Mater., 166, 123 (2013); https://doi.org/10.1016/j.micromeso.2012.04.031.
L.M. González-Barcia, M.J. Romero,A.M. González Noya, M.R. Bermejo, M. Maneiro, G. Zaragoza and R. Pedrido,Inorg. Chem., 55, 7823 (2016); https://doi.org/10.1021/acs.inorgchem.6b01362.
N. Nordin, W.Z. Samad, M.R. Yusop and M.R. Othman, Malays. J. Anal. Sci., 19, 236 (2015).
D.A. Garnovskii, S.I. Levchenkov, G.G. Aleksandrov, V.G. Vlasenko, Y.V. Zubavichus, A.I. Uraev and A.S. Burlov, Russ. J. Coord. Chem., 43, 156 (2017); https://doi.org/10.1134/S1070328417030010.
S. Cabaleiro, J. Castro, E. Vázquez-López, J.A. García-Vázquez, J. Romero and A. Sousa, Polyhedron, 18, 1669 (1999); https://doi.org/10.1016/S0277-5387(99)00049-2.
V.Yu. Frolov, S.N. Bolotin and V.T. Panyshkin, Russ. J. Appl. Chem., 78, 897 (2005); https://doi.org/10.1007/s11167-005-0416-7.
S.R. Long and J.J. Lagowski, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 813 (2007).
J.E. Dick and D. Chong, Org. Chem. Curr. Res, 1, (2012); https://doi.org/10.4172/2161-0401.1000e113.
T. Hudlicky, C.D. Claeboe, L.E. Brammer, L. Koroniak, G. Butora and I. Ghiviriga, J. Org. Chem., 64, 4909 (1999); https://doi.org/10.1021/jo990382v.
E.J. Horn, B.R. Rosen and P.S. Baran, ACS Cent. Sci., 2, 302 (2016); https://doi.org/10.1021/acscentsci.6b00091.
R. Francke, Beilstein J. Org. Chem., 10, 2858 (2014); https://doi.org/10.3762/bjoc.10.303.
D.G. Yakhvarov, A.F. Khusnuriyalova and O.G. Sinyashin, J. Organomet., 33, 4574 (2014); https://doi.org/10.1021/om500100q.
L.G. Chatten, J. Pharm. Biomed. Anal., 1, 491 (1983); https://doi.org/10.1016/0731-7085(83)80062-4.
F.C. de Abreu, P.A. de L. Ferraz and M.O.F. Goulart, J. Braz. Chem. Soc., 13, 19 (2002); https://doi.org/10.1590/S0103-50532002000100004.
L.M. Borland and A.C. Michael, Electrochemical Methods for Neuroscience, CRC Press, Taylor & Francis (2007).
H. Naohara, S. Ye and K. Uosaki, J. Phys. Chem. B, 102, 4366 (1998); https://doi.org/10.1021/jp980624f.
G.-R. Li, H. Xu, X.-F. Lu, J.-X. Feng, Y.-X. Tong and C.-Y. Su,Nanoscale, 5, 4056 (2013); https://doi.org/10.1039/c3nr00607g.
R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x.
M.V. Roldán, N. Pellegri and O. de Sanctis, J. Nanopart., Article ID 524150 (2013); https://doi.org/10.1155/2013/524150.
C.J. Huang, Y.H. Wang, P.H. Chiu, M.C. Shih and T.H. Meen, Mater. Lett., 60, 1896 (2006); https://doi.org/10.1016/j.matlet.2005.12.045.
G. She, X. Zhang, W. Shi, Y. Cai, N. Wang, P. Liu and D. Chen, Cryst. Growth Des., 8, 1789 (2008); https://doi.org/10.1021/cg7008623.
N. Uddin, M. Sirajuddin, N. Uddin, M. Tariq, H. Ullah, S. Ali, S.A. Tirmizi and A.R. Khan, Spectrochim. Acta Mol. Biomol. Spectrosc., 140, 563 (2015); https://doi.org/10.1016/j.saa.2014.12.062.
G.H. Ming, Z.G. Liang and W.X. Yong, Asian J. Chem., 23, 4819 (2011).
P. Drabina, P. Funk, A. Ruzicka, J. Hanusek and M. Sedlak, Transit. Metal Chem., 35, 363 (2010); https://doi.org/10.1007/s11243-010-9336-3.
A. Mesbah, S. Jacques, E. Rocca, M. François and J. Steinmetz, Eur. J. Inorg. Chem., 2011, 1315 (2011); https://doi.org/10.1002/ejic.201001024.
A.I. Vogel’s, Text Book of Quantitative Chemical Analysis, Longman Group UK, Ltd. (1989).
V. Otero, D. Sanches, C. Montagner, M. Vilarigues, L. Carlyle, J.A. Lopes and M.J. Melo, J. Raman Spectrosc., 45, 1197 (2014); https://doi.org/10.1002/jrs.4520.
K. Pachori, S. Malik and S. Wankhede, Res. J. Chem. Sci., 4, 75 (2014).
O.B.A. Agbaje, A.A. Osowole, E.O. Malumi and S.M. Wakil, Res. Revs. J. Chem., 4, 1 (2015).
M. Iqbal, S. Ali, N. Muhammad and M. Sohail,Polyhedron, 57, 83 (2013); https://doi.org/10.1016/j.poly.2013.04.020.
D.A. Köse, H. Necefoglu and H. Icbudak, J. Coord. Chem., 61, 3508 (2008); https://doi.org/10.1080/00958970802074555.
C.J. Athira, Y. Sindhu, M. Sujamol and K. Mohanan, J. Serb. Chem. Soc., 76, 249 (2011); https://doi.org/10.2298/JSC100414025A.
A.T. Colak, F. Colak, P. Oztopcu-Vatan, D. Akduman, S. Kabadere and R. Uyar, Med. Chem. Res., 22, 4376 (2013); https://doi.org/10.1007/s00044-012-0446-7.
V. Mathew, J. Joseph, S. Jacob and K.E. Abraham, Indian J. Pure Appl. Phys., 49, 21 (2011).
J.R. Anacona and V.E. Marquez, Transition Met. Chem., 33, 579 (2008); https://doi.org/10.1007/s11243-008-9083-x.
J.R. Anacona, V.E. Marquez and Y. Jimenez, J. Coord. Chem., 62, 1172 (2009); https://doi.org/10.1080/00958970802382768.
D.J. Awad, F. Conrad, A. Koch, U. Schilde, A. Pöppl and P. Strauch, Inorg. Chim. Acta, 363, 1488 (2010); https://doi.org/10.1016/j.ica.2010.01.021.