Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorescence Quenching of b-Casein by Silver Nanoparticles and Copper Nanoparticles in Presence of Sugars: A Quantitative Exploration
Corresponding Author(s) : V. Vasumathi
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
The protein b-casein (BCA) exhibits a strong fluorescence emission, which is sensitive to active quenchers. Metal nanoparticles like copper nanoparticles and silver nanoparticles with enhanced and unique properties are reported to quench protein fluorescence appreciably. In the present work, the fluorescence quenching effects of metal nanoparticles on the protein fluorescence are extensively studied in presence of various sugar molecules. This may play a significant role in the sensing applications of sugar molecular systems in the presence of metal nanoparticles. b-Casein is used as fluorophore and sugar molecular systems like sucrose, maltose, fructose, lactose, galactose and glucose are chosen as quenchers and the protein-sugar interactions are arrived from fluorescence quenching results in the presence of copper nanoparticles and silver nanoparticles. To find the role of life time on the intensity of fluorescence, time resolved fluorescence measurements for the protein-sugar systems in the presence and absence of nanoparticles is measured. The protein-nanoparticles-sugar fluorescence interactions are analyzed by using Stern-Volmer plots and thermodynamic plots using fluorescence intensity quenching data. The trends in the extent of quenching action on protein fluorescence and also the binding interactions among protein sugar systems are quantified in the presence of copper nanoparticles and silver nanoparticles separately, in terms of Stern-Volmer constant values and binding constants values. b-Casein is found to interact strongly with the quenchers in the presence of copper nanoparticle and silver nanoparticle. Silver nanoparticle is read to be a better quenching mediator than copper nanoparticle for the fluorescence intensity in molecular interactions. Order of sugars quenching the protein fluorescence in presence of the nanoparticles is found.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Yum, T.P. McNicholas, B. Mu and M.S. Strano, J. Diabetes Sci. Technol., 7, 72 (2013); https://doi.org/10.1177/193229681300700109.
- S. Lalonde, E. Boles, H. Hellmann, L. Barker, J.W. atrick, W.B. Frommer, J.M. Ward, The Plant Cell Online, 11, 707 (1999). https://doi.org/10.1105/tpc.11.4.707.
- J. Holgersson, A. Gustafsson and M.E. Breimer, Immunol. Cell Biol., 83, 694 (2005); https://doi.org/10.1111/j.1440-1711.2005.01373.x.
- S.K. Vaishanav, J. Korram, R. Nagwanshi, K.K. Ghosh and M.L. Satnami, J. Fluoresc., 26, 855 (2016); https://doi.org/10.1007/s10895-016-1773-8.
- J. Hesselberth, M.P. Robertson, S. Jhaveri and A.D. Ellington, Rev. Mol. Biotechnol., 74, 15 (2000); https://doi.org/10.1016/S1389-0352(99)00005-7.
- R.R. Breaker, Curr. Opin. Biotechnol., 13, 31 (2002); https://doi.org/10.1016/S0958-1669(02)00281-1.
- S. Seetharaman, M. Zivarts, N. Sudarsan and R.R. Breaker, Nat. Biotechnol., 19, 336 (2001); https://doi.org/10.1038/86723.
- Y. Lu, Chem. Eur. J., 8, 4588 (2002); https://doi.org/10.1002/1521-3765(20021018)8:20<4588::AID-CHEM 4588>3.0.CO;2-Q.
- S.D. Jayasena, Clin. Chem., 45, 1628 (1999).
- K. Haupt and K. Mosbach, Chem. Rev., 100, 2495 (2000); https://doi.org/10.1021/cr990099w.
- E. Gizeli and C.R. Lowe, Curr. Opin. Biotechnol., 7, 66 (1996); https://doi.org/10.1016/S0958-1669(96)80097-8.
- A.P.F. Turner, Science, 290, 1315 (2000); https://doi.org/10.1126/science.290.5495.1315.
- D.A. Blake, R.M. Jones, R.C. Blake II, A.R. Pavlov, I.A. Darwish and H. Yu, Biosens. Bioelectron., 16, 799 (2001); https://doi.org/10.1016/S0956-5663(01)00223-8.
- K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam and R. Richards-Kortum, Technol. Cancer Res. Treat., 2, 491 (2003); https://doi.org/10.1177/153303460300200602.
- K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R. Richartz-Kortum, Cancer Res., 63, 1999 (2003).
- D. Yelin, D. Oron, S. Thiberge, E. Moses and Y. Silberberg, Opt. Express, 11, 1385 (2003); https://doi.org/10.1364/OE.11.001385.
- A.E. Baer, T.A. Laursen, F. Guilak and L.A. Setton, J. Biomech. Eng., 125, 1 (2003); https://doi.org/10.1115/1.1532790.
- D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, Appl. Phys. B, 74(Suppl.), S97 (2002); https://doi.org/10.1007/s00340-002-0884-x.
- L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J.L. West, Proc. Natl. Acad. Sci. USA, 100, 13549 (2003); https://doi.org/10.1073/pnas.2232479100.
- M.I.J. Stich, L.H. Fischer and O.S. Wolfbeis, Chem. Soc. Rev., 39, 3102 (2010); https://doi.org/10.1039/B909635N.
- M.A. Arnold, J.T. Olesberg and G.W. Small, eds.: D. D. Cunningham and J. A. Stenken, Near-Infrared Spectroscopy for Noninvasive Glucose Sensing, In: In Vivo Glucose Sensing, John Wiley & Sons, Inc., Hoboken, NJ, USA, vol. 174 (2009).
- 22 M.K. Balaconis, K. Billingsley, J.M. Dubach, K.J. Cash and H.A. Clark, J. Diabetes Sci. Technol., 5, 68 (2011); https://doi.org/10.1177/193229681100500110.
- E. Alarcón, A.M. Edwards, A. Aspée, C.D. Borsarelli and E.A. Lissi, Photochem. Photobiol. Sci., 8, 933 (2009); https://doi.org/10.1039/b901056d.
- D.E. Epps, T.J. Raub and F.J. K’ezdy, Anal. Biochem., 227, 342 (1995); https://doi.org/10.1006/abio.1995.1290.
- D.E. Epps, T.J. Raub, V. Caiolfa, A. Chiari and M. Zamai, J. Pharm. Pharmacol., 51, 41 (1999); https://doi.org/10.1211/0022357991772079.
- A. Barik, K.I. Priyadarsini and H. Mohan, Photochem. Photobiol., 77, 597 (2003); https://doi.org/10.1562/0031-8655(2003)077<0597:PSOBOC>2.0.CO;2.
- E.I. Alarcon, C.J. Bueno-Alejo, C.W. Noel, K.G. Stamplecoskie, N.L. Pacioni, H. Poblete and J.C. Scaiano, J. Nanopart. Res., 15, 1374 (2013); https://doi.org/10.1007/s11051-012-1374-7.
- U. Kragh-Hansen, Dan. Med. Bull., 37, 57 (1990).
- I. Lynch and K.A. Dawson, Nano Today, 3, 40 (2008); https://doi.org/10.1016/S1748-0132(08)70014-8.
- J. Mariam, P.M. Dongre and D.C. Kothari, J. Fluoresc., 21, 2193 (2011); https://doi.org/10.1007/s10895-011-0922-3.
- M. Moller and A. Denicola, Biochem. Mol. Biol. Educ., 30, 309 (2002); https://doi.org/10.1002/bmb.2002.494030050089.
- M. Moller and A. Denicola, Biochem. Mol. Biol. Educ., 30, 175 (2002); https://doi.org/10.1002/bmb.2002.494030030035.
- J.C. Pickup, F. Khan, Z.-L. Zhi, J. Coulter and D.J.S. Birch, J. Diabetes Sci. Technol., 7, 62 (2013); https://doi.org/10.1177/193229681300700108.
- R. Sierra-Avila, M. Perez-Alvarez, G. Cadenas-Pliego, C.A. Ávila-Orta, R. Betancourt-Galindo, E. Jiménez-Regalado, R.M. Jiménez-Barrera, and J.G. Martínez-Colunga, J. Nanomater., Article ID 361791 (2014); https://doi.org/10.1155/2014/361791.
- S. Chandra,A. Kumar and P.K. Tomar, J. Saudi Chem. Soc., 18, 149 (2014); https://doi.org/10.1016/j.jscs.2011.06.009.
- T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 025004 (2011); https://doi.org/10.1088/2043-6262/2/2/025004.
- D. Deng, Y. Jin, Y. Cheng, T. Qi and F. Xiao, ACS Appl. Mater. Interf., 5, 3839 (2013); https://doi.org/10.1021/am400480k.
- A. Zielinska, E. Skwarek,A. Zaleska, M. Gazda and J. Hupka, Procedia Chem., 1, 1560 (2009); https://doi.org/10.1016/j.proche.2009.11.004.
- A.W. Orbaek, M.M. McHale and A.R. Barron, J. Chem. Educ., 92, 339 (2015); https://doi.org/10.1021/ed500036b.
- W. Zhang, X. Qiao and J. Chen, Chem. Phys., 330, 495 (2006); https://doi.org/10.1016/j.chemphys.2006.09.029.
- B. Khodashenas and H.R. Ghorbani, J. Arab. Chem., (2015); https://doi.org/10.1016/j.arabjc.2014.12.014.
- Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid and A.O. Al-Youbi, Colloids Surf. B Biointerfaces, 82, 513 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.008.
- A.J. Christy and M. Umadevi, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035013 (2012); https://doi.org/10.1088/2043-6262/3/3/035013.
- J.I. Hussain, S. Kumar, A.A. Hashmi and Z. Khan, Adv. Mater. Lett., 2, 188 (2011); https://doi.org/10.5185/amlett.2011.1206.
- X. Li, J. Shen, A. Du, Z. Zhang, G. Gao, H. Yang and J. Wu, Colloids Surf. A Physicochem. Eng. Asp., 400, 73 (2012); https://doi.org/10.1016/j.colsurfa.2012.03.002.
- T. Larsson, M. Wedborg and D. Turner, Anal. Chim. Acta, 583, 357 (2007); https://doi.org/10.1016/j.aca.2006.09.067.
- M. Kubista, R. Sjoback, S. Eriksson and B. Albinsson, Analyst, 119, 417 (1994); https://doi.org/10.1039/AN9941900417.
- M.L. Mertens and J.H.R. Kägi, Anal. Biochem., 96, 448 (1979); https://doi.org/10.1016/0003-2697(79)90605-5.
- X. Luciani, S. Mounier, R. Redon and A. Bois, Chemomet. Intell. Lab. Syst., 96, 227 (2009); https://doi.org/10.1016/j.chemolab.2009.02.008.
- V.R. Preedy, Dietary Sugars: Chemistry, Analysis, Function and Effects, Royal Society of Chemistry, Chap. 17 (2012).
- N. Tayeh, T. Rungassamy and J.R. Albani, J. Pharm. Biomed. Anal., 50, 107 (2009); https://doi.org/10.1016/j.jpba.2009.03.015.
- A. Kathiravan, R. Renganathan and S. Anandan,Polyhedron, 28, 157 (2009); https://doi.org/10.1016/j.poly.2008.09.023.
- B. Chakraborty and S. Basu, J. Lumin., 129, 34 (2009); https://doi.org/10.1016/j.jlumin.2008.07.012.
- D.M. Togashi, A.G. Ryder, D. McMahon, P. Dunne and J. McManus, Vol. 6628 of Proceedings of SPIE-OSA Biomedical Optics, Optical Society of America, paper No. 6628_61 (2007); https://doi.org/10.1364/ECBO.2007.6628_61.
- Y. Teng, R. Liu, S. Yan, X. Pan, P. Zhang and M. Wang, J. Fluoresc., 20, 381 (2010); https://doi.org/10.1007/s10895-009-0543-2.
- J.S. Gebauer, M. Malissek, S. Simon, S.K. Knauer, M. Maskos, R.H. Stauber, W. Peukert and L. Treuel, Langmuir, 28, 9673 (2012); https://doi.org/10.1021/la301104a.
References
K. Yum, T.P. McNicholas, B. Mu and M.S. Strano, J. Diabetes Sci. Technol., 7, 72 (2013); https://doi.org/10.1177/193229681300700109.
S. Lalonde, E. Boles, H. Hellmann, L. Barker, J.W. atrick, W.B. Frommer, J.M. Ward, The Plant Cell Online, 11, 707 (1999). https://doi.org/10.1105/tpc.11.4.707.
J. Holgersson, A. Gustafsson and M.E. Breimer, Immunol. Cell Biol., 83, 694 (2005); https://doi.org/10.1111/j.1440-1711.2005.01373.x.
S.K. Vaishanav, J. Korram, R. Nagwanshi, K.K. Ghosh and M.L. Satnami, J. Fluoresc., 26, 855 (2016); https://doi.org/10.1007/s10895-016-1773-8.
J. Hesselberth, M.P. Robertson, S. Jhaveri and A.D. Ellington, Rev. Mol. Biotechnol., 74, 15 (2000); https://doi.org/10.1016/S1389-0352(99)00005-7.
R.R. Breaker, Curr. Opin. Biotechnol., 13, 31 (2002); https://doi.org/10.1016/S0958-1669(02)00281-1.
S. Seetharaman, M. Zivarts, N. Sudarsan and R.R. Breaker, Nat. Biotechnol., 19, 336 (2001); https://doi.org/10.1038/86723.
Y. Lu, Chem. Eur. J., 8, 4588 (2002); https://doi.org/10.1002/1521-3765(20021018)8:20<4588::AID-CHEM 4588>3.0.CO;2-Q.
S.D. Jayasena, Clin. Chem., 45, 1628 (1999).
K. Haupt and K. Mosbach, Chem. Rev., 100, 2495 (2000); https://doi.org/10.1021/cr990099w.
E. Gizeli and C.R. Lowe, Curr. Opin. Biotechnol., 7, 66 (1996); https://doi.org/10.1016/S0958-1669(96)80097-8.
A.P.F. Turner, Science, 290, 1315 (2000); https://doi.org/10.1126/science.290.5495.1315.
D.A. Blake, R.M. Jones, R.C. Blake II, A.R. Pavlov, I.A. Darwish and H. Yu, Biosens. Bioelectron., 16, 799 (2001); https://doi.org/10.1016/S0956-5663(01)00223-8.
K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam and R. Richards-Kortum, Technol. Cancer Res. Treat., 2, 491 (2003); https://doi.org/10.1177/153303460300200602.
K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R. Richartz-Kortum, Cancer Res., 63, 1999 (2003).
D. Yelin, D. Oron, S. Thiberge, E. Moses and Y. Silberberg, Opt. Express, 11, 1385 (2003); https://doi.org/10.1364/OE.11.001385.
A.E. Baer, T.A. Laursen, F. Guilak and L.A. Setton, J. Biomech. Eng., 125, 1 (2003); https://doi.org/10.1115/1.1532790.
D. Yelin, D. Oron, E. Korkotian, M. Segal and Y. Silberberg, Appl. Phys. B, 74(Suppl.), S97 (2002); https://doi.org/10.1007/s00340-002-0884-x.
L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J.L. West, Proc. Natl. Acad. Sci. USA, 100, 13549 (2003); https://doi.org/10.1073/pnas.2232479100.
M.I.J. Stich, L.H. Fischer and O.S. Wolfbeis, Chem. Soc. Rev., 39, 3102 (2010); https://doi.org/10.1039/B909635N.
M.A. Arnold, J.T. Olesberg and G.W. Small, eds.: D. D. Cunningham and J. A. Stenken, Near-Infrared Spectroscopy for Noninvasive Glucose Sensing, In: In Vivo Glucose Sensing, John Wiley & Sons, Inc., Hoboken, NJ, USA, vol. 174 (2009).
22 M.K. Balaconis, K. Billingsley, J.M. Dubach, K.J. Cash and H.A. Clark, J. Diabetes Sci. Technol., 5, 68 (2011); https://doi.org/10.1177/193229681100500110.
E. Alarcón, A.M. Edwards, A. Aspée, C.D. Borsarelli and E.A. Lissi, Photochem. Photobiol. Sci., 8, 933 (2009); https://doi.org/10.1039/b901056d.
D.E. Epps, T.J. Raub and F.J. K’ezdy, Anal. Biochem., 227, 342 (1995); https://doi.org/10.1006/abio.1995.1290.
D.E. Epps, T.J. Raub, V. Caiolfa, A. Chiari and M. Zamai, J. Pharm. Pharmacol., 51, 41 (1999); https://doi.org/10.1211/0022357991772079.
A. Barik, K.I. Priyadarsini and H. Mohan, Photochem. Photobiol., 77, 597 (2003); https://doi.org/10.1562/0031-8655(2003)077<0597:PSOBOC>2.0.CO;2.
E.I. Alarcon, C.J. Bueno-Alejo, C.W. Noel, K.G. Stamplecoskie, N.L. Pacioni, H. Poblete and J.C. Scaiano, J. Nanopart. Res., 15, 1374 (2013); https://doi.org/10.1007/s11051-012-1374-7.
U. Kragh-Hansen, Dan. Med. Bull., 37, 57 (1990).
I. Lynch and K.A. Dawson, Nano Today, 3, 40 (2008); https://doi.org/10.1016/S1748-0132(08)70014-8.
J. Mariam, P.M. Dongre and D.C. Kothari, J. Fluoresc., 21, 2193 (2011); https://doi.org/10.1007/s10895-011-0922-3.
M. Moller and A. Denicola, Biochem. Mol. Biol. Educ., 30, 309 (2002); https://doi.org/10.1002/bmb.2002.494030050089.
M. Moller and A. Denicola, Biochem. Mol. Biol. Educ., 30, 175 (2002); https://doi.org/10.1002/bmb.2002.494030030035.
J.C. Pickup, F. Khan, Z.-L. Zhi, J. Coulter and D.J.S. Birch, J. Diabetes Sci. Technol., 7, 62 (2013); https://doi.org/10.1177/193229681300700108.
R. Sierra-Avila, M. Perez-Alvarez, G. Cadenas-Pliego, C.A. Ávila-Orta, R. Betancourt-Galindo, E. Jiménez-Regalado, R.M. Jiménez-Barrera, and J.G. Martínez-Colunga, J. Nanomater., Article ID 361791 (2014); https://doi.org/10.1155/2014/361791.
S. Chandra,A. Kumar and P.K. Tomar, J. Saudi Chem. Soc., 18, 149 (2014); https://doi.org/10.1016/j.jscs.2011.06.009.
T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 025004 (2011); https://doi.org/10.1088/2043-6262/2/2/025004.
D. Deng, Y. Jin, Y. Cheng, T. Qi and F. Xiao, ACS Appl. Mater. Interf., 5, 3839 (2013); https://doi.org/10.1021/am400480k.
A. Zielinska, E. Skwarek,A. Zaleska, M. Gazda and J. Hupka, Procedia Chem., 1, 1560 (2009); https://doi.org/10.1016/j.proche.2009.11.004.
A.W. Orbaek, M.M. McHale and A.R. Barron, J. Chem. Educ., 92, 339 (2015); https://doi.org/10.1021/ed500036b.
W. Zhang, X. Qiao and J. Chen, Chem. Phys., 330, 495 (2006); https://doi.org/10.1016/j.chemphys.2006.09.029.
B. Khodashenas and H.R. Ghorbani, J. Arab. Chem., (2015); https://doi.org/10.1016/j.arabjc.2014.12.014.
Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid and A.O. Al-Youbi, Colloids Surf. B Biointerfaces, 82, 513 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.008.
A.J. Christy and M. Umadevi, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 035013 (2012); https://doi.org/10.1088/2043-6262/3/3/035013.
J.I. Hussain, S. Kumar, A.A. Hashmi and Z. Khan, Adv. Mater. Lett., 2, 188 (2011); https://doi.org/10.5185/amlett.2011.1206.
X. Li, J. Shen, A. Du, Z. Zhang, G. Gao, H. Yang and J. Wu, Colloids Surf. A Physicochem. Eng. Asp., 400, 73 (2012); https://doi.org/10.1016/j.colsurfa.2012.03.002.
T. Larsson, M. Wedborg and D. Turner, Anal. Chim. Acta, 583, 357 (2007); https://doi.org/10.1016/j.aca.2006.09.067.
M. Kubista, R. Sjoback, S. Eriksson and B. Albinsson, Analyst, 119, 417 (1994); https://doi.org/10.1039/AN9941900417.
M.L. Mertens and J.H.R. Kägi, Anal. Biochem., 96, 448 (1979); https://doi.org/10.1016/0003-2697(79)90605-5.
X. Luciani, S. Mounier, R. Redon and A. Bois, Chemomet. Intell. Lab. Syst., 96, 227 (2009); https://doi.org/10.1016/j.chemolab.2009.02.008.
V.R. Preedy, Dietary Sugars: Chemistry, Analysis, Function and Effects, Royal Society of Chemistry, Chap. 17 (2012).
N. Tayeh, T. Rungassamy and J.R. Albani, J. Pharm. Biomed. Anal., 50, 107 (2009); https://doi.org/10.1016/j.jpba.2009.03.015.
A. Kathiravan, R. Renganathan and S. Anandan,Polyhedron, 28, 157 (2009); https://doi.org/10.1016/j.poly.2008.09.023.
B. Chakraborty and S. Basu, J. Lumin., 129, 34 (2009); https://doi.org/10.1016/j.jlumin.2008.07.012.
D.M. Togashi, A.G. Ryder, D. McMahon, P. Dunne and J. McManus, Vol. 6628 of Proceedings of SPIE-OSA Biomedical Optics, Optical Society of America, paper No. 6628_61 (2007); https://doi.org/10.1364/ECBO.2007.6628_61.
Y. Teng, R. Liu, S. Yan, X. Pan, P. Zhang and M. Wang, J. Fluoresc., 20, 381 (2010); https://doi.org/10.1007/s10895-009-0543-2.
J.S. Gebauer, M. Malissek, S. Simon, S.K. Knauer, M. Maskos, R.H. Stauber, W. Peukert and L. Treuel, Langmuir, 28, 9673 (2012); https://doi.org/10.1021/la301104a.