Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis, Single X-Ray Crystal Structure, DFT and Molecular Docking Studies of Novel Clip Type-Pyridyltetrazole Analogues
Corresponding Author(s) : Shaik Mustafa
Asian Journal of Chemistry,
Vol. 30 No. 2 (2018): Vol 30 Issue 2
Abstract
Novel clip type-pyridyltetrazole analogs of 1,3-bis(5-(pyridin-2-yl)-1H-tetrazol-1-yl)propan-2-ol (3A) and 1,3-bis(5-(pyridin-2-yl)-2H-tetrazol-2-yl) propan-2-ol (3B) have been synthesized by the reaction of 2-(1H-tetrazol-5-yl)pyridine (2) with 0.5 equivalent of epichlorohydrine in DMF using K2CO3 as a base. Relevant monomers of 1-chloro-3-(5-(pyridin-2-yl)-1H-tetrazol-1-yl)propan-2-ol (3C) and 1-chloro-3-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)propan-2-ol (3D) have been synthesized by reaction of compound 2 with one equivalent of epichlorohydrine in DMF using K2CO3 as a base. The compounds 3C and 3D are further modified by the reaction sequences to obtain the ligands 1-(2-(hydroxymethyl)phenoxy)-3-(5-(pyridin-2-yl)-1H-tetrazol-1-yl)propan-2-ol (3G) and 1-(2-(hydroxymethyl)phenoxy)-3-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)propan-2-ol (3H) respectively. The eight synthesized compounds (3A-3H) were characterized by 1H NMR, 13C NMR, IR and Mass spectroscopy. The compound 3A, was crystallized in triclinic primitive system space group P2(1)/c with a = 8.9442 Å, b = 9.2097 Å, c = 11.3558 Å, V = 814.68 Å, R1 = 0.0213 at 298 K. The compounds 3A and 3B were optimized, HOMO/LUMO and molecular electrostatic potential studies were carried by DFT calculations with B3LYP/6.311G** method. The molecular docking studies were performed on 3A, 3B, 3G and 3H and the studies reveal that all the compounds exist in crescent shapes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.M.T. Frija, R. Fausto, R.M.S. Loureiro and M.L.S. Cristiano, J. Mol. Catal. Chem., 305, 142 (2009); https://doi.org/10.1016/j.molcata.2008.12.007.
- N. Fischer, D. Izsak, T.M. Klapötke, S. Rappenglück and J. Stierstorfer, Chem. Eur. J., 18, 4051 (2012); https://doi.org/10.1002/chem.201103737.
- 3 V. Subramanian, J.S. Knight, S. Parelkar, L. Anguish, S.A. Coonrod, M.J. Kaplan and P.R. Thompson, J. Med. Chem., 58, 1337 (2015); https://doi.org/10.1021/jm501636x.
- D. Fischer, T.M. Klapötke and J. Stierstorfer, Angew. Chem. Int. Ed., 54, 10299 (2015); https://doi.org/10.1002/anie.201502919.
- D.J. Carini, J.V. Duncia, P.E. Aldrich,A.T. Chiu,A.L. Johnson, M.E. Pierce, W.A. Price, J.B. Santella and G.J. Wells, J. Med. Chem., 34, 2525 (1991); https://doi.org/10.1021/jm00112a031.
- E.A. Popova, R.E. Trifonov and V.A. Ostrovskii, Arkivoc, 45 (2012); https://doi.org/10.3998/ark.5550190.0013.102.
- G. Aromí, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); https://doi.org/10.1016/j.ccr.2010.10.038.
- J.H. Lee, H. Lee, S. Seo, J. Jaworski, M.L. Seo, S. Kang, J.Y. Lee and J.H. Jung, New J. Chem., 35, 1054 (2011); https://doi.org/10.1039/c0nj00840k.
- Y. Tao, J.R. Li, Z. Chang and X.H. Bu, Cryst. Growth Des., 10, 564 (2010); https://doi.org/10.1021/cg900934u.
- G.W. Yang, Y.S. Ma, Q.Y. Li, Y. Zhou, G.Q. Gu, Y. Wu and R.X. Yuan, J. Coord. Chem., 62, 1766 (2009); https://doi.org/10.1080/00958970802705893.
- S.-M. Zhang, Z. Chang, T.-L. Hu and X.-H. Bu, Inorg. Chem., 49, 11581 (2010); https://doi.org/10.1021/ic1017467.
- U. Sheridan, J.F. Gallagher, M.J. Bjerrum, A. Fleming, F. Kelleher and J. McGinley, Inorg. Chim. Acta, 421, 200 (2014); https://doi.org/10.1016/j.ica.2014.05.028.
- S. Mustafa, B.U. Rao, M.S. Surendrababu, K.K. Raju and G.N. Rao,Chem. Biodivers., 12, 1516 (2015); https://doi.org/10.1002/cbdv.201400369.
- M. Veronelli, S. Dechert, S. Demeshko and F. Meyer, Inorg. Chem., 54, 6917 (2015); https://doi.org/10.1021/acs.inorgchem.5b00898.
- G.M. Sheldrick, SHELXS-97, Program of Crystal Structure Solution, University of Göttingen, Germany (1997).
- M.F. Wu, M.S. Wang, S.P. Guo, F.K. Zheng, H.F. Chen, X.M. Jiang, G.N. Liu, G.C. Guo and J.S. Huang, Cryst. Growth Des., 11, 372 (2011); https://doi.org/10.1021/cg100817s.
- T. Mavromoustakos,A. Kolocouris, M. Zervou, P. Roumelioti, J. Matsoukas and R. Weisemann, J. Med. Chem., 42, 1714 (1999); https://doi.org/10.1021/jm980499w.
- R.A. Powers and B.K. Shoichet, J. Med. Chem., 45, 3222 (2002); https://doi.org/10.1021/jm020002p.
- T. Pencheva, D. Lagorce, I. Pajeva, B.O. Villoutreix and M.A. Miteva, BMC Bioinform., 9, 438 (2008); https://doi.org/10.1186/1471-2105-9-438.
- B.K. Tripuramallu, R. Kishore and S.K. Das, Inorg. Chim. Acta, 368, 132 (2011); https://doi.org/10.1016/j.ica.2010.12.062.
- H. Zhao, Z.R. Qu, H.Y. Ye and R.G. Xiong, Chem. Soc. Rev., 37, 84 (2008); https://doi.org/10.1039/B616738C.
- S.M. Mobin and A. Mohammad, Dalton Trans., 43, 13032 (2014); https://doi.org/10.1039/C4DT01312C.
- R. Soman, S. Sujatha and C. Arunkumar, J. Fluor. Chem., 163, 16 (2014); https://doi.org/10.1016/j.jfluchem.2014.04.002.
- A. Farukh and M. Muddassir, J. Photochem. Photobiol. B: Biol., 101, 37 (2010).
- E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1.
- F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013.
- N. Okulik and A.H. Jubert, Internet Electron. J. Mol. Des., 4, 17 (2005).
- S.J. Grabowski, ed. J. Leszczynski, Hydrogen Bonding-New Insights, Challenges and Advances in Computational Chemistry and Physics, Springer, vol. 3 (2006).
- P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum: New York (1981).
- B.S. Reddy, S.M. Sondhi and J.W. Lown, Pharmacol. Ther., 84, 1 (1999); https://doi.org/10.1016/S0163-7258(99)00021-2.
- S. Neidle, Nat. Prod. Rep., 18, 291 (2001); https://doi.org/10.1039/a705982e.
- R.B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic press, USA, edn 2, pp. 345-346 (2004).
References
L.M.T. Frija, R. Fausto, R.M.S. Loureiro and M.L.S. Cristiano, J. Mol. Catal. Chem., 305, 142 (2009); https://doi.org/10.1016/j.molcata.2008.12.007.
N. Fischer, D. Izsak, T.M. Klapötke, S. Rappenglück and J. Stierstorfer, Chem. Eur. J., 18, 4051 (2012); https://doi.org/10.1002/chem.201103737.
3 V. Subramanian, J.S. Knight, S. Parelkar, L. Anguish, S.A. Coonrod, M.J. Kaplan and P.R. Thompson, J. Med. Chem., 58, 1337 (2015); https://doi.org/10.1021/jm501636x.
D. Fischer, T.M. Klapötke and J. Stierstorfer, Angew. Chem. Int. Ed., 54, 10299 (2015); https://doi.org/10.1002/anie.201502919.
D.J. Carini, J.V. Duncia, P.E. Aldrich,A.T. Chiu,A.L. Johnson, M.E. Pierce, W.A. Price, J.B. Santella and G.J. Wells, J. Med. Chem., 34, 2525 (1991); https://doi.org/10.1021/jm00112a031.
E.A. Popova, R.E. Trifonov and V.A. Ostrovskii, Arkivoc, 45 (2012); https://doi.org/10.3998/ark.5550190.0013.102.
G. Aromí, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); https://doi.org/10.1016/j.ccr.2010.10.038.
J.H. Lee, H. Lee, S. Seo, J. Jaworski, M.L. Seo, S. Kang, J.Y. Lee and J.H. Jung, New J. Chem., 35, 1054 (2011); https://doi.org/10.1039/c0nj00840k.
Y. Tao, J.R. Li, Z. Chang and X.H. Bu, Cryst. Growth Des., 10, 564 (2010); https://doi.org/10.1021/cg900934u.
G.W. Yang, Y.S. Ma, Q.Y. Li, Y. Zhou, G.Q. Gu, Y. Wu and R.X. Yuan, J. Coord. Chem., 62, 1766 (2009); https://doi.org/10.1080/00958970802705893.
S.-M. Zhang, Z. Chang, T.-L. Hu and X.-H. Bu, Inorg. Chem., 49, 11581 (2010); https://doi.org/10.1021/ic1017467.
U. Sheridan, J.F. Gallagher, M.J. Bjerrum, A. Fleming, F. Kelleher and J. McGinley, Inorg. Chim. Acta, 421, 200 (2014); https://doi.org/10.1016/j.ica.2014.05.028.
S. Mustafa, B.U. Rao, M.S. Surendrababu, K.K. Raju and G.N. Rao,Chem. Biodivers., 12, 1516 (2015); https://doi.org/10.1002/cbdv.201400369.
M. Veronelli, S. Dechert, S. Demeshko and F. Meyer, Inorg. Chem., 54, 6917 (2015); https://doi.org/10.1021/acs.inorgchem.5b00898.
G.M. Sheldrick, SHELXS-97, Program of Crystal Structure Solution, University of Göttingen, Germany (1997).
M.F. Wu, M.S. Wang, S.P. Guo, F.K. Zheng, H.F. Chen, X.M. Jiang, G.N. Liu, G.C. Guo and J.S. Huang, Cryst. Growth Des., 11, 372 (2011); https://doi.org/10.1021/cg100817s.
T. Mavromoustakos,A. Kolocouris, M. Zervou, P. Roumelioti, J. Matsoukas and R. Weisemann, J. Med. Chem., 42, 1714 (1999); https://doi.org/10.1021/jm980499w.
R.A. Powers and B.K. Shoichet, J. Med. Chem., 45, 3222 (2002); https://doi.org/10.1021/jm020002p.
T. Pencheva, D. Lagorce, I. Pajeva, B.O. Villoutreix and M.A. Miteva, BMC Bioinform., 9, 438 (2008); https://doi.org/10.1186/1471-2105-9-438.
B.K. Tripuramallu, R. Kishore and S.K. Das, Inorg. Chim. Acta, 368, 132 (2011); https://doi.org/10.1016/j.ica.2010.12.062.
H. Zhao, Z.R. Qu, H.Y. Ye and R.G. Xiong, Chem. Soc. Rev., 37, 84 (2008); https://doi.org/10.1039/B616738C.
S.M. Mobin and A. Mohammad, Dalton Trans., 43, 13032 (2014); https://doi.org/10.1039/C4DT01312C.
R. Soman, S. Sujatha and C. Arunkumar, J. Fluor. Chem., 163, 16 (2014); https://doi.org/10.1016/j.jfluchem.2014.04.002.
A. Farukh and M. Muddassir, J. Photochem. Photobiol. B: Biol., 101, 37 (2010).
E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1.
F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013.
N. Okulik and A.H. Jubert, Internet Electron. J. Mol. Des., 4, 17 (2005).
S.J. Grabowski, ed. J. Leszczynski, Hydrogen Bonding-New Insights, Challenges and Advances in Computational Chemistry and Physics, Springer, vol. 3 (2006).
P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum: New York (1981).
B.S. Reddy, S.M. Sondhi and J.W. Lown, Pharmacol. Ther., 84, 1 (1999); https://doi.org/10.1016/S0163-7258(99)00021-2.
S. Neidle, Nat. Prod. Rep., 18, 291 (2001); https://doi.org/10.1039/a705982e.
R.B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic press, USA, edn 2, pp. 345-346 (2004).